Biologists uncover a novel cellular proofreading mechanism

November 11, 2011

( -- To make proteins, cells assemble long chains of amino acids, based on genetic instructions from DNA. That construction takes place in a tiny cellular structure called a ribosome, to which amino acids are delivered by transfer RNA (tRNA).

Each of the 20 amino acids encoded by the is carried by a specific type of tRNA. The matching between amino acid and tRNA must be precise, or else the wrong amino acid will be added to the protein.

A team of MIT researchers has now discovered that cells have a proofreading mechanism that destroys any malformed tRNA molecules. This ensures that only the correct amino acids are used, preventing proteins from being misassembled.

The finding is reported in the Nov. 10 issue of the journal Science. Lead author of the paper is Jeremy Wilusz, a postdoc in the David H. Koch Institute for Integrative at MIT. Senior author of the paper is Phillip Sharp, Institute Professor at MIT.

It was already known that all tRNAs, which are made of nucleotides, just like DNA, have a CCA sequence at one end, which is where an amino acid can latch onto the tRNA. This CCA is added to the tRNA after it is transcribed from DNA, by an enzyme called the CCA-adding enzyme. Without CCA, the tRNA would be nonfunctional.

The new study shows that the CCA-adding enzyme can also add a CCACCA sequence. This sequence is added to abnormal tRNAs – those with a mutation or a structural flaw. The CCACCA tag marks the tRNA for destruction by other enzymes called exonucleases.

“It’s a way to prevent these mistakes, by taking the tRNA out of service and not giving it the chance to add the wrong amino acid,” says Wilusz. “If it can’t quite fold right, the structure falls apart a little bit and everything’s a bit more flimsy, so you’re able to add this second CCA.”

The researchers observed this mechanism in species from all kingdoms of life.

Explore further: Researchers transform recoded cells into factories that produce novel proteins

Related Stories

New protein manufacturing process unveiled

September 10, 2015

Researchers from Northwestern University and Yale University have developed a user-friendly technology to help scientists understand how proteins work and fix them when they are broken. Such knowledge could pave the way for ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Recommended for you

Fecal mimicry found in seeds that fool dung beetles

October 6, 2015

(—A team of researchers with the University of Cape Town and the University of KwaZulu-Natal, both in South Africa, has found an example of a seed from a plant using mimicry to fool a beetle. In their paper published ...

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.