A new model for understanding biodiversity

November 21, 2011
Photo: Pawel Ryszawa (Wikimedia Commons)

(PhysOrg.com) -- Animals like foxes and raccoons are highly adaptable. They move around and eat everything from insects to eggs. They and other "generalist feeders" like them may also be crucial to sustaining biological diversity, according to a new study published in the Proceedings of the National Academy of Sciences (PNAS).

McGill biology researchers have developed a unified, spatially based understanding of biodiversity that takes into account the complex of predators and prey. "Biodiversity exists within a landscape. Predators and prey are continuously on the move as their habitats change – it's a complex dynamic system," says lead author Pradeep Pillai, a doctoral candidate at McGill.

Previous theories of biodiversity have either concentrated on the complex network of feeding interactions that connects all species into food webs or have focused on the way that species are connected in space. "A unified theory of ecological diversity requires understanding how species interact both in space and time, and this is what is different about our work," explains co-author Michel Loreau, who holds the Canada Research Chair in Theoretical Community and Ecosystem Ecology.

What they discovered was that a "branching network" maintained by generalist species, like or coyotes, that are able to move around and prey on different species in different locations, have an important role in promoting complex food webs and thereby in maintaining biodiversity. The researchers concluded that these generalist species have the advantage of being able to find prey no matter where they are as they move from one place to another, and this sustains the network.

This theory also lays a foundation for understanding the effects human activities – like deforestation – are likely to have not simply on a single species but on whole food webs. The researchers show how food webs are eroded by species extinction when disturbed by habitat destruction. "The theory is useful because it helps us understand how biodiversity is maintained, but also the impacts humans have when they disrupt ecological networks by destroying and fragmenting habitat," concludes co-author Andrew Gonzalez, Canada Research Chair in Biodiversity Science and Director of the Quebec Centre for Science.

Explore further: Web page ranking algorithm detects critical species in ecosystems

More information: To read an abstract of the paper: www.eurekalert.org/pio/tipsheetdoc.php/237/pnas.201106235

Related Stories

Study: Ecological effects of biodiversity loss underestimated

November 30, 2010

Children aren't the only youngsters who are picky eaters: More than half of all species are believed to change their diets -- sometimes more than once -- between birth and adulthood. And a new study by ecologists at Rice ...

Biological diversity: Exploiters and exploited

May 3, 2011

From the crops we farm to the insects which blight them mankind has always had a complex relationship with nature, commanding some species while falling victim to others. In Biological Diversity: Exploiters and Exploited ...

The grass is always greener

August 19, 2011

(PhysOrg.com) -- Recent study of grasslands shows that species variety more important to ecosystem services than previously thought.

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.