How Wolbachia bacteria controls vectors of deadly diseases

October 20, 2011

Researchers at Boston University have made discoveries that provide the foundation towards novel approaches to control insects that transmit deadly diseases such as dengue fever and malaria through their study of the Wolbachia bacteria. Their findings have been published in the current issue of Science Express.

"Wolbachia are widespread, maternally-transmitted intracellular bacteria that infect most insect species and are able to alter the reproduction of innumerous hosts," said Horacio Frydman, assistant professor of biology at Boston University and the study's principal investigator. "An important aspect of this relationship is that Wolbachia often alter their host's reproductive ability, yet very little is known about how this is achieved." In this paper, PhD student Eva Fast and her colleagues in the Frydman lab describe a study in Drosophila mauritiana that offers insights into the through which Wolbachia upregulates by their hosts.

Specifically, the BU team demonstrate that Wolbachia in D. mauritiana have a remarkable tropism for terminal filament and cap cells in the female germline stem cell (GSC) niche (and a similar tropism in hub cells, the male GSC niche). They also show through extensive analysis of proliferation and cell death markers in multiple experiments that infected D. mauritiana have higher rates of GSC division and lower rates of germline cyst death in the germarium relative to uninfected counterparts. Finally, they provide compelling evidence suggesting that Wolbachia affects GSC division through effects on the niche. "Knowledge emerging from this research will be relevant for the basic as well for the development of cell biological strategies for disease control," said Frydman.

Explore further: Gene breakthrough heralds better prospect for malaria solution

Related Stories

Taking the sting out of insect disease

October 31, 2008

( -- University of Queensland researchers have made a discovery that could open up a new front in the fight against insect-transmitted diseases.

Scientists find bacterium can halt dengue virus transmission

April 1, 2010

Dengue fever -- caused by a virus transmitted by mosquitoes -- threatens 2.5 billion people each year and there is no vaccine or treatment. New research by Michigan State University entomologists has found that a bacterium ...

Dengue-resistant mosquitoes to be released next year

October 10, 2010

( -- Every year, dengue fever infects up to 100 million people and kills more than 20,000 of them. In an effort to reduce these numbers, scientists have infected mosquitoes with bacteria that makes them less able ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.