UMaine researchers discover revolutionary process for biofuel

Oct 25, 2011

(PhysOrg.com) -- Researchers have long been interested in waste products as sources of biofuel. In Maine, those waste items could include treetops and limbs deemed by the forest products industry as unusable and often left behind in the woods.

A University of Maine and his research team have, however, discovered a revolutionary new chemical process can transform forest residues, along with other materials such as , grasses, and construction wastes, into a hydrocarbon .

Considering the amount of wood in Maine – including around 6 million green tons of additional available biomass, according to a 2008 Maine Forest Service Assessment of Sustainable Biomass Availability– the new fuel has the possibility of 120 million gallons per year of gasoline, diesel, heating oil and kerosene mixtures while providing all the steam and power needs of the processing plants. In addition, the U.S. transportation industry, which is dependent on hydrocarbon fuels because of their high energy density, could benefit from the revolutionary finding.

Based on a mixed-carboxylate platform, the new fuel was developed by M. Clayton Wheeler, a UMaine associate professor of chemical and biological engineering, and undergraduate students in his lab. The fuel has been determined to have a number of properties that make it better suited to serve as a drop-in fuel – which refers to the ease of which it can be used in a number of fuel tanks and pipelines – than many hydrocarbon fuels being widely researched and even those currently on the market.

In an early round of analysis, the UMaine oil was found to have boiling points that encompass those of jet fuel, diesel, and gasoline. Further refinement to meet emissions standards would be needed in order to use the UMaine oil in vehicles that drive on public ways, but Wheeler believes the oil can be refined as simply as any other current oil at a standard refinery.

The process by which the oil is created, known as thermal deoxygenation or TDO, is relatively simple, Wheeler says, and will work on the cellulose found in wood or other substances that contain cellulose or carbohydrates.

“The process is unique,” Wheeler says. “No one else in the world is doing this.”

The TDO process starts with the conversion of cellulose to organic acids. The acids are combined with calcium hydroxide to form a calcium salt. That salt is heated to 450 degrees Celsius (900 degrees Fahrenheit) in a reactor, which constantly stirs the salt. This produces a reaction resulting in a dark amber-colored oil.

The reaction removes nearly all of the oxygen from the oil, which is a key step that distinguishes TDO from other processes. Oxygen is removed from as both carbon dioxide and water, and without the need for any outside source of hydrogen to remove the oxygen. Therefore, most of the energy in the original cellulose source is contained in the new oil.

“Biomass has a lot of oxygen in it. All of that oxygen is dead weight and doesn’t provide any energy when you go to use that as a fuel,” Wheeler says. “If you’re going to make a hydrocarbon fuel, one of the things you have to do is remove oxygen from biomass. You can do it by using hydrogen, which is expensive and also decreases the energy efficiency of your process. So if there’s a way to remove the oxygen from the biomass chemically, then you’ve densified it significantly. Our oil has less than 1 percent oxygenates. No one else has done anything like this. ”

Researchers in Wheeler’s lab at UMaine recently used unpurified, mixed carboxylates which were produced from grocery store waste such as banana peels, cardboard boxes and shelving to successfully make a batch of the fuel. The use of municipal solid waste illustrates another important point about the potential of the UMaine fuel – it does not require an uncontaminated cellulose source, which makes the TDO process and resulting even more attractive. Many other pathways to hydrocarbons require purified feedstocks or intermediates, which adds more complexity and cost to their processes.

“You don’t need pure wood or pure cellulose,” says Wheeler. “Anytime you can use something without having to separate it, your costs go down.”

Wheeler and his team already have the ability to produce several liters of the per month in the laboratory. The process can be scaled up using equipment and chemicals commonly found in facilities such as some pulp mills.

Explore further: Intel wireless charging in a bowl coming sooner than later

Provided by University of Maine

not rated yet
add to favorites email to friend print save as pdf

Related Stories

How much mileage do you get from sawdust?

Jun 27, 2011

As vacationers gas up to hit the road this summer, they could find themselves wondering about alternative fuels and their potential to ease the strain on pocketbooks and the environment.

'Green' gasoline on the horizon?

Jan 13, 2009

University of Oklahoma researchers believe newer, more environmentally friendly fuels produced from biomass could create alternative energy solutions and alleviate dependence on foreign oil without requiring changes to current ...

Recommended for you

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

Sep 19, 2014

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Idealistic Norwegian sun trappers

Sep 19, 2014

The typical Norwegian owner of a solar heating system is a resourceful man in his mid-fifties. He is technically skilled, interested in energy systems, and wants to save money and protect the environment.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

martinwolf
not rated yet Oct 25, 2011
looks very promising...perhaps a home kit for us living away from the city and paying bag fees to remove our waste papers etc as well as having an abundance of biomass at our fingertips so to speak..:)
CapitalismPrevails
1 / 5 (1) Oct 30, 2011
Why isn't this big news in the media? Is this not sensational?