Researchers create two-segment nanotubes with distinct semiconducting domains

Oct 21, 2011 by Bob Yirka report
SEM and TEM micrographs of a research sample. Image: Science, DOI:10.1126/science.1210369

(PhysOrg.com) -- A group of researchers working in Japan has devised a means of creating dual segmented nanotubes where each segment has separate and distinct semiconducting properties. The team describes how they were able to create the unique nanotubes which are joined by means of a heterojunction, in their paper published in Science.

The team, led by Takanori Fukushima and Takuzo Aida and working out of the RIKEN Advanced Science Institute in Saitama, Japan, created the new nanotubes by growing first one segment from an HBC derivative, then adding bipyridine side-chains to help with metal binding. They then coated the outside of the segment with to stabilize them and to prevent them from clumping.

Once they had the first segment, the next task was to grow another segment of a different type from one of the ends of the first segment. They did this by treating a second HBC derivative with just four fluorine atoms, which helped the two segments stick to one another while the second segment grew.

The end result was a single nanotube with segments that had distinctly different . In this case, one side was made of type p (which has relatively few electrons) while the other side was made of type n semiconducting material (which has a lot of electrons).

Such nanotubes could be used to more efficiently move the hole in an electron-hole pair that strikes a solar cell, shunting it off to the p type semiconductor side of the nanotube and the electron to the type n material side. By making the more efficient, i.e. maximizing the electron-hole separation without dissipation, the new technology could conceivably wind up replacing conventional methods used in solar energy and other technologies. Such nanotubes should also extend the life of many such and could be grown in virtually any shape, making them usable in a wide variety of applications.

The next challenge for the group will be to figure out a way to grow the nanotubes standing up so that the whole process can be standardized and then of course industrialized. Once that’s accomplished, the new could be used in all manner of new devices, ranging from lasers to solar collectors to more efficient transistors.

Explore further: Researchers make nanostructured carbon using the waste product sawdust

More information: Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments, Science, 21 October 2011: Vol. 334 no. 6054 pp. 340-343 DOI: 10.1126/science.1210369

ABSTRACT
One-dimensionally connected organic nanostructures with dissimilar semiconducting properties are expected to provide a reliable platform in understanding the behaviors of photocarriers, which are important for the development of efficient photon-to-electrical energy conversion systems. Although bottom-up supramolecular approaches are considered promising for the realization of such nanoscale heterojunctions, the dynamic nature of molecular assembly is problematic. We report a semiconducting nanoscale organic heterojunction, demonstrated by stepwise nanotubular coassembly of two strategically designed molecular graphenes. The dissimilar nanotubular segments, thus connected noncovalently, were electronically communicable with one another over the heterojunction interface and displayed characteristic excitation energy transfer and charge transport properties not present in a mixture of the corresponding homotropically assembled nanotubes.

Related Stories

High-mobility semiconducting carbon nanotubes

Apr 29, 2004

T Durkop, B M Kim and M S Fuhrer reviewed experiments to determine the resistivity and charge-carrier mobility in semiconducting carbon nanotubes in Journal of Physics: Condens. Matter (vol. 16, 2004, R553-R580) Electron tra ...

Carbon nanotube avalanche process nearly doubles current

Feb 09, 2009

(PhysOrg.com) -- By pushing carbon nanotubes close to their breaking point, researchers at the University of Illinois have demonstrated a remarkable increase in the current-carrying capacity of the nanotubes, ...

High Value Semiconducting Carbon Nanotubes

Jul 12, 2004

A simple technique has been developed for producing high value semiconducting carbon nanotubes from samples of single and multi walled carbon nanotubes. The Oxford Invention is a technique for purifying samp ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Sandia researcher examines the physics of carbon nanotubes

May 01, 2008

Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest ...

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0