New technology enables molecular-level insight into carbon sequestration

Oct 04, 2011
Flaviu Turcu co-invented a novel NMR system for carbon sequestration research applications with EMSL staff, David Hoyt (Principal Investigator) and Jesse Sears, and PNNL colleagues, Jian Zhi Hu and Kevin Rosso. Turcu, pictured above, holds the high-pressure MAS rotor and stands behind the high-pressure rotor loading reaction chamber pieces of the system.

Carbon sequestration is a potential solution for reducing greenhouse gases that contribute to climate change, but its scientific challenges are complex. Analytical tools are needed that provide information about the mineral-fluid interactions of carbon dioxide (CO2) at the molecular level.

As part of Pacific Northwest National Laboratory (PNNL)'s Carbon Sequestration Initiative, a team of EMSL and PNNL researchers developed and patented such a tool—a unique high-pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) capability that operates in conditions characteristic of geologic carbon sequestration.

Described in the September 2011 issue of the Journal of Magnetic Resonance, this new technology consists of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and reopening of the high-pressure MAS rotor, and a MAS probe with a localized radiofrequency coil for background signal suppression.

This new capability can help determine reaction intermediates and final products that occur during mineral dissolution reactions relevant to the geologic disposal of CO2, as these researchers reported in the July 2011 issue of the International Journal of Greenhouse Gas Control.

Identifying reaction intermediates is not possible using only ex situ measurements and is critical to determining the mechanisms of mineral dissolution at high pressures. This new capability has the potential to further the exploration of solid-state chemistry at new levels of high pressure and temperature in many science areas.

Explore further: Advanced molecular 'sieves' could be used for carbon capture

More information: References: Hoyt DW, RVF Turcu, JA Sears, KM Rosso, SD Burton, AR Felmy, and JZ Hu. 2011. “High-pressure Magic Angle Spinning Nuclear Magnetic Resonance,” Journal of Magnetic Resonance, DOI:10.1016/j.jmr.2011.07.019

Hoyt DW, JA Sears, RVF Turcu, KM Rosso, and JZ Hu. 2011. U.S. Patent submission E-16894, “Devices and Process for High-Pressure Magic Angle Spinning Nuclear Magnetic Resonance,” filed July 28, 2011 (provisional patent submitted December 13, 2010).

Kwak JH, JZ Hu, RVF Turcu, KM Rosso, ES Ilton, C Wang, JA Sears, MH Engelhard, AR Felmy, and DW Hoyt. 2011. "The Role of H2O in the Carbonation of Forsterite in Supercritical CO2." International Journal of Greenhouse Gas Control 5:1081-1092.

add to favorites email to friend print save as pdf

Related Stories

One tough microscope

Jun 03, 2011

When it comes to seeing how carbon dioxide behaves in a geologic storehouse, most instruments can't take the pressure. But, a new apparatus created by scientists at Pacific Northwest National Laboratory, Wright ...

Byproduct of steel shows potential in CO2 sequestration

Oct 13, 2008

With steelworks around the world emitting huge amounts of carbon dioxide, scientists are reporting that a byproduct of steel production could be used to absorb that greenhouse gas to help control global warming. The study ...

Carbon sequestration field test begins

May 16, 2007

The U.S. Department of Energy says its Midwest Geological Sequestration Consortium has started its first enhanced oil recovery field test in Illinois.

Chemistry curbs spreading of carbon dioxide

May 06, 2011

(PhysOrg.com) -- The presence of even a simple chemical reaction can delay or prevent the spreading of stored carbon dioxide in underground aquifers, new research from the University of Cambridge has revealed.

Recommended for you

A dye with tunable optical characteristics

Sep 12, 2014

Researchers from RIKEN and the University of Tokyo have developed an organic dye molecule with tunable light-absorption and color characteristics. This development promises to open the door to the creation ...

How salt causes buildings to crumble

Sep 11, 2014

Salt crystals are often responsible when buildings start to show signs of aging. Researchers from the Institute for Building Materials have studied salt damage in greater depth and can now predict weathering ...

User comments : 0