Tagging tumors with gold: Scientists use gold nanorods to flag brain tumors

Oct 12, 2011
Gold nanoparticle solutions and corresponding phantom images. Top: (a) Three nanoparticle solutions of varying shape and size (left to right: gold nanospheres, short gold nanorods, long gold nanorods). Bottom: Darkfield images of brain-simulating phantoms containing (b) 60nm gold nanospheres and (c) gold nanorods. (Scale bar=50 μm) Credit: Kevin Seekell

"It's not brain surgery" is a phrase often uttered to dismiss a job's difficulty, but when the task actually is removing a brain tumor, even the slightest mistake could have serious health consequences. To help surgeons in such high-pressure situations, researchers from Prof. Adam Wax's team at Duke University's Fitzpatrick Institute for Photonics and Biomedical Engineering Department have proposed a way to harness the unique optical properties of gold nanoparticles to clearly distinguish a brain tumor from the healthy, and vital, tissue that surrounds it. The team will present their findings at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011, taking place in San Jose, Calif. next week.

Current techniques for outlining vary, but all have limitations, such as the inability to perform real-time imaging without big, expensive equipment, or the toxicity and limited lifespan of certain labeling agents. Gold nanoparticles—which are so small that 500 of them end-to-end could fit across a human hair—might provide a better way to flag tumorous tissue, since they are non-toxic and relatively inexpensive to manufacture.

The Duke researchers synthesized gold, rod-shaped nanoparticles with varying length-to-width ratios. The different-sized particles displayed different , so by controlling the nanorods' growth the team could "tune" the particles to scatter a specific frequency of light. The researchers next joined the tuned particles to antibodies that bind to growth factor receptor proteins found in unusually high concentrations on the outside of cancer cells. When the antibodies latched on to cancer cells, the gold nanoparticles marked their presence.

The team tested the method by bathing slices of tumor-containing mouse brain in a solution of gold nanoparticles merged with antibodies. Shining the tuned frequency of light on the sample revealed bright points where the tumors lurked. The tunability of the gold nanoparticles is important, says team member Kevin Seekell, because it allows researchers to choose from a window of light frequencies that are not readily absorbed by biological tissue. It might also allow researchers to attach differently tuned nanoparticles to different antibodies, providing a way to diagnose different types of tumors based the specific surface proteins the cancer cells display. Future work by the team will also focus on developing a surgical probe that can image in a living brain, Seekell says.

Explore further: Gold nanorods target cancer cells

More information: FiO presentation FWL4, "Controlled Synthesis of Gold Nanorods and Application to Brain Tumor Delineation," by Kevin Seekell et al. is at 11:45 a.m. on Wednesday, Oct. 19. http://www.frontiersinoptics.com/

add to favorites email to friend print save as pdf

Related Stories

Using gold particles to fight cancer

Oct 22, 2010

Researchers at the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands, are developing a method of detecting and treating tumors with the help of gold particles ...

Gold and silver nano baubles

Dec 03, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

Recommended for you

Gold nanorods target cancer cells

9 hours ago

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.