Stem rust-resistant wheat landraces identified

Oct 24, 2011

U.S. Department of Agriculture (USDA) scientists have identified a number of stem rust-resistant wheat varieties and are retesting them to verify their resistance.

Stem rust occurs worldwide wherever is grown. Over a large area, losses from can be severe, ranging from 50 to 70 percent, and individual fields can be destroyed.

Agricultural Research Service (ARS) plant pathologist Mike Bonman at the agency's Small Grains and Potato Germplasm Research Unit in Aberdeen, Idaho, and his colleagues screened more than 3,000 wheat landraces from the U.S. National Small Grains Collection against new races of the stem rust pathogen found in wheat fields in Kenya. Landraces with confirmed resistance are being crossed with susceptible wheat to determine the genetic basis of the resistance.

ARS is USDA's principal intramural scientific research agency, and the research supports the USDA priority of promoting international food security.

Field trials in Kenya to screen for resistance are vital to this work, according to Bonman, who worked at the Institute (IRRI) for 9 years before coming to ARS. He is now working collaboratively with the International Maize and Wheat Improvement Center (CIMMYT) near Mexico City, and the Kenya Agricultural Research Institute (KARI).

Excellent procedures have been developed by CIMMYT and KARI personnel to promote rust disease in the nursery, enabling Bonman to evaluate which ARS accessions are resistant to rust. According to Bonman, CIMMYT facilitates the nursery and site logistics, and ARS helps with evaluating the level of rust development in wheat varieties.

The research team's goal is to find new genes for to a rust strain called Ug99, because that strain has the capacity to overcome many of the that have been used for the past 50 years. This work will help Africa's growers now and will help suppress disease and reduce damage in developing countries. It also will prepare the United States for Ug99 if the disease arrives here, according to Bonman.

Explore further: Team advances genome editing technique

More information: Read more about this and other cooperative studies between ARS and international research partners in the October 2011 issue of Agricultural Research magazine.

Provided by United States Department of Agriculture

1 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Dangerous wheat disease jumps Red Sea

Jan 16, 2007

A new form of stem rust, a virulent wheat disease, has jumped from eastern Africa and is now infecting wheat in Yemen in the Arabian Peninsula.

Scientists fight stem rust UG99 before it becomes a threat

Nov 18, 2008

(PhysOrg.com) -- Wheat breeders and plant pathologists at Montana State University are part of a global effort to develop varieties of wheat resistant to a new fungus. UG99, a stem rust strain that was first discovered in ...

Elusive rust resistance genes located

Dec 06, 2006

The discovery of a DNA marker for two key rust resistance genes is enabling plant breeders around the world to breed more effective rust resistant wheat varieties.

Researchers find rust resistance genes in wild grasses

Oct 21, 2008

(PhysOrg.com) -- University of Adelaide researchers have identified new sources of stem and leaf rust resistance in wild grass relatives of wheat sourced mostly from the 'fertile crescent' of the Middle East.

Uncovering the mystery of a major threat to wheat

Jun 01, 2010

Agricultural Research Service (ARS) scientists have solved a longstanding mystery as to why a pathogen that threatens the world's wheat supply can be so adaptable, diverse and virulent. It is because the fungus that causes ...

Recommended for you

Team advances genome editing technique

22 hours ago

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0