Small defects mean big problems for industrial solar cells

Oct 13, 2011
High-resolution X-ray nanofluorescence spectroscopy identifying metallic nanoclusters responsible for poor transport in solar cells.

Nanoscale clustering of metal impurities at intragranular dislocations within industrial mc-Si solar cells have been observed by users from the Massachusetts Institute of Technology working with the Center for Nanoscale Materials (CNM) X-Ray Microscopy Group, in collaboration with scientists at the Advanced Photon Source (APS).

These nanoscale clusters are shown to directly correlate with local recombination activity within the cell, regulating the overall performance of the energy conversion device.

Industrial conversion efficiencies of are far from their theoretical maxima, and their performance is often limited by inhomogeneously distributed nanoscale defects. The team used X-ray nanofluorescence spectroscopy at the Hard X-Ray Nanoprobe beamline to probe the elemental nature of recombination-active intragranular dislocations in industrial solar cells.

Nanoscale metal impurities of copper and iron were shown to cluster near dislocations with a high recombination strength, and be absent from dislocations with a low recombination strength. This correlation gives an important insight into the effects of nanoscale metal impurities on device performance.

Explore further: Thinnest feasible nano-membrane produced

More information: M.I. Bertoni et al., "Nanoprobe X-Ray fluorescence characterization of defects in large-area solar cells," Energy Environ. Sci, 4, 4252-4257 (2011) DOI: 10.1039/C1EE02083H

add to favorites email to friend print save as pdf

Related Stories

World’s Most Precise 'Hard X-Ray' Nanoprobe Activated

May 19, 2005

Marking a major step forward in using X-rays to study some of the smallest phenomena in nature, the world’s first “hard X-ray” nanoprobe beamline was activated on March 15, 2005. The unique nanoprobe ...

Structural consequences of nanolithography

Aug 11, 2011

(PhysOrg.com) -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.