Small defects mean big problems for industrial solar cells

Oct 13, 2011
High-resolution X-ray nanofluorescence spectroscopy identifying metallic nanoclusters responsible for poor transport in solar cells.

Nanoscale clustering of metal impurities at intragranular dislocations within industrial mc-Si solar cells have been observed by users from the Massachusetts Institute of Technology working with the Center for Nanoscale Materials (CNM) X-Ray Microscopy Group, in collaboration with scientists at the Advanced Photon Source (APS).

These nanoscale clusters are shown to directly correlate with local recombination activity within the cell, regulating the overall performance of the energy conversion device.

Industrial conversion efficiencies of are far from their theoretical maxima, and their performance is often limited by inhomogeneously distributed nanoscale defects. The team used X-ray nanofluorescence spectroscopy at the Hard X-Ray Nanoprobe beamline to probe the elemental nature of recombination-active intragranular dislocations in industrial solar cells.

Nanoscale metal impurities of copper and iron were shown to cluster near dislocations with a high recombination strength, and be absent from dislocations with a low recombination strength. This correlation gives an important insight into the effects of nanoscale metal impurities on device performance.

Explore further: Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent

More information: M.I. Bertoni et al., "Nanoprobe X-Ray fluorescence characterization of defects in large-area solar cells," Energy Environ. Sci, 4, 4252-4257 (2011) DOI: 10.1039/C1EE02083H

Related Stories

World’s Most Precise 'Hard X-Ray' Nanoprobe Activated

May 19, 2005

Marking a major step forward in using X-rays to study some of the smallest phenomena in nature, the world’s first “hard X-ray” nanoprobe beamline was activated on March 15, 2005. The unique nanoprobe ...

Structural consequences of nanolithography

Aug 11, 2011

(PhysOrg.com) -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the ...

Recommended for you

Towards graphene biosensors

Jun 24, 2015

For the first time, a team of scientists has succeeded in precisely measuring and controlling the thickness of an organic compound that has been bound to a graphene layer. This might enable graphene to be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.