Scientists demonstrate the power of optical forces in blood cell identification

Oct 12, 2011
This is a microscope image showing a trapped cell in the optical chromatography setup - Cells are brought into the channel by the pressure-driven flow that runs from the top left to the bottom right of the image. As cells enter the channel, the laser shutter is opened and the beam pushes the cell from right to left. Flow is adjusted until the cell rests at the measurement location, at which point the flow rate is recorded and the cell is released. Image courtesy of the US Naval Research Laboratory

(PhysOrg.com) -- U.S. Naval Research Laboratory researchers Dr. Sean J. Hart, Dr. Colin G. Hebert and Mr. Alex Terray have developed a laser-based analysis method that can detect optical pressure differences between populations or classes of blood cells that does not rely on prior knowledge, antibodies, or fluorescent labels for discrimination.

"Biological analysis systems that rely on labels can be costly, labor intensive and depend upon prior knowledge of the target in question," says Dr. Hart, NRL Chemistry Division. "Using whole blood, which is composed of a variety of cell types, we have demonstrated the power of optical forces to separate different blood components."

When a laser beam impinges on a biological particle, a force is generated due to the scattering and refraction of photons. The resulting force is called optical pressure and can be used to physically move a biological cell, suspended in water, several millimeters.

Using this , scientists are able to exploit the inherent differences in optical pressure, which arise from variations in particle size, shape, refractive index, or morphology, as a means of separating and characterizing particles.

As an initial step toward developing a system for label-free sorting and characterization of blood components, the optical pressures of purified human components, including lymphocytes, monocytes, granulocytes, and erythrocytes, have been determined. Significant differences exist between the cell types, indicating the potential for separations based on these 'optical pressures.'

"While additional research is required, this is an important step toward the development of a system for the label-free optical fractionation of and components based on intrinsic characteristics," adds Dr. Hart.

In general, the throughput for optical-based sorting has been relatively low, on the order of tens of cells per second. However, with an increase in both fluid flow and , the throughput could be increased significantly, exceeding 100 particles per second in some favorable cases.

Such a system could be used in the future for antibody-free detection of blood-borne pathogens for the prevention of sepsis and other diseases as well as the detection of biological threat agents.

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Researchers report breakthrough in rapid malaria detection

Dec 20, 2007

A research team led by Dr. Paul Wiseman of the Departments of Physics and Chemistry at McGill University has developed a radically new technique that uses lasers and non-linear optical effects to detect malaria infection ...

Making better biosensors with electron density waves

Oct 22, 2010

An emerging field with the tongue-twisting name of "optofluidic plasmonics" promises a new way to detect and analyze biological molecules for drug discovery, medical diagnostics, and the detection of biochemical weapons. ...

Catching cancer's spread by watching hemoglobin

Apr 30, 2007

In an advance that can potentially assist cancer diagnosis, a new optical technique provides high-resolution, three-dimensional images of blood vessels by taking advantage of the natural multiple-photon-absorbing properties ...

Recommended for you

A refined approach to proteins at low resolution

23 hours ago

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0