Scientists reach the heights with gecko-inspired tank robot (w/ video)

Oct 31, 2011

(PhysOrg.com) -- Researchers have developed a tank-like robot that has the ability to scale smooth walls, opening up a series of applications ranging from inspecting pipes, buildings, aircraft and nuclear power plants to deployment in search and rescue operations.

Their study, published today, November 1, in , is the first to apply this unique, bioinspired material to a that operates in a tank-like manner.

This method offers an alternative to the magnets, suction cups, and claws that have all been presented as possible mechanisms, but seem to fall at the same hurdle – the ability to climb smooth surfaces such as glass or plastic.

Drawing inspiration from the gecko, researchers have been able to create adhesives that carefully mimic the toe pads of the lizard that give it the amazing ability to climb smooth vertical surfaces and shuffle across ceilings.

This video is not supported by your browser at this time.

Tank-like robots, driven by belts rather than a set of legs, are advantageous in that they have a simplified mechanical design and control architecture, have an increased mobility and can be easily expanded, just like a train, if you need to increase the load the robot is carrying.

The new, 240g robot, also known as the Timeless Belt Climbing Platform (TBCP-II) and developed by researchers at Simon Fraser University Burnaby, is capable of reliably transferring from a flat surface to a wall over both inside and outside corners at speeds of up to 3.4cm/s.

TBCP-II is also fitted with a multitude of sensors that are able to detect the surroundings of the robot and change its course of action accordingly.

Lead author, researcher Jeff Krahn, said: "With an adequate power supply, our robot is capable of functioning fairly independently when it encounters larger-scale objects such as boxes or walls. However, we are still developing a control strategy to ensure the robot is capable of fully autonomous functionality."

A tank-like robot that can scale vertical walls and crawl over ledges without using suction cups, glue or other liquid bonds to adhere to the surface. The 240-gramme (6.9-ounce) beast has tracks that are covered with dry microfibres modelled on the toe hairs of the gecko, which can famously zip up windows and along walls almost without effort.

The toes of geckos have amazing characteristics that allow them to adhere to most surfaces and research suggests that they work as result of van der Waals forces – very weak, attractive forces that occur between molecules.

These dry, but sticky toe pads, also known as dry fibrillar adhesives, were recreated in the lab using the material polydimethylsiloxane (PDMS) and were manufactured to contain very small mushroom cap shapes that were 17 micrometres wide and 10 micrometres high.

"While van der Waals forces are considered to be relatively weak, the thin, flexible overhang provided by the mushroom cap ensures that the area of contact between the robot and the surface is maximized.

"The adhesive pads on geckos follow this same principle by utilizing a large number of fibres, each with a very small tip. The more fibres a gecko has in contact, the greater attachment force it has on a surface," Krahn continued.

Explore further: Will tomorrow's robots move like snakes?

More information: "A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps" J Krahn et al 2011 Smart Mater. Struct. 20 115021. iopscience.iop.org/0964-1726/20/11/115021

Related Stories

Secrets of the gecko foot help robot climb (w/ Video)

Aug 24, 2010

(PhysOrg.com) -- The science behind gecko toes holds the answer to a dry adhesive that provides an ideal grip for robot feet. Stanford mechanical engineer Mark Cutkosky is using the new material, based on ...

Duct tape that never loses its stick

Jan 07, 2005

Gecko feet hold key to development of self-cleaning adhesives Duct tape that never loses its stick. Bandages that come off without sticky residue or an "ouch." Gecko feet may hold the key to the developmen ...

Robots climb up the wall (w/ Video)

Jan 19, 2010

(PhysOrg.com) -- A robotics scientist from Ben-Gurion University of the Negev in Beersheeba, Israel, has developed four different kinds of robots that climb up walls.

Copying geckos’ toes

Sep 05, 2011

Geckos are famous for their ability to walk up walls and scamper across ceilings. The dry-adhesive surface of geckos’ toes has inspired many attempts to copy this ability in an artificial material. Isabel ...

Recommended for you

Flying robots will go where humans can't

19 hours ago

There are many situations where it's impossible, complicated or too time-consuming for humans to enter and carry out operations. Think of contaminated areas following a nuclear accident, or the need to erect ...

Will tomorrow's robots move like snakes?

Sep 16, 2014

Over the last few years, researchers at MIT's Computer Science and Artificial Intelligence Lab (CSAIL) have developed biologically inspired robots designed to fly like falcons, perch like pigeons, and swim ...

Robot Boris learning to load a dishwasher (w/ Video)

Sep 12, 2014

Researchers at the University of Birmingham in the U.K. have set themselves an ambitious goal: programming a robot in such a way as to allow it to collect dishes, cutlery, etc. from a dinner table, and put ...

Deep-sea diver hand offers freedom and feedback

Sep 12, 2014

Bodyskins and goggles are hardly the solution for divers who need to reach extreme depths. The Atmospheric Dive Suit (ADS) gives them the protection they need. Recently, The Economist detailed a technology ...

User comments : 0