Scientists take up golf to prove long-standing theory of cell stickiness

Oct 05, 2011
Scientists take up golf to prove long-standing theory of cell stickiness

State-of-the-art, highly-sensitive golf clubs, developed by scientists, regularly catch the eye of golf's elite; however before the likes of Rory McIlroy get excited this time, this new golf putter is being put to use in microbiology laboratories.

The 'micro putter', developed in a study published today, 5 October 2011, in IOP Publishing's journal Measurement Science and Technology, has been designed to test the "" of single .

With a length of 240 micrometres, a width of 30 micrometres and a tip of just two micrometres, golfers would not even be able to see this new putter; one micrometre is equal to one-millionth of a metre.

Researchers from Nagoya University in Japan are using the micro putter to nudge individual placed on a variety of surfaces to test cell adhesion.

Cell adhesion is the ability of a single cell to stick to other cells, or an exterior material, and has long been theorised as a way of testing if a cell is dead or alive.

According to the "cell adhesion model", the more a cell sticks the greater number of chemical bonds it has on its surface. A dead cell would have fewer on its surface so would therefore stick less than a living cell.

The research team has provided compelling evidence that this theory is correct, showing that a cell's adhesion is decreased by more than half once it's died.

Compared to conventional cell testing whereby averages are obtained by staining dead and living colonies with special dyes, the micro-putter could provide a fast and simple approach to testing individual cells and provide a more precise understanding of the that occur.

Co-author, Yajing Shen, said, "The identification of cell viability is very important in the biological and . Take disease therapy for example: cell viability measurements could be used to evaluate the death of or evaluate cell damage due to toxins."

To fabricate the intricate details of the micro putter, charged particles were fired at a cantilever, using a technique known as focused ion beam (FIB), to remove material from its surface.

The micro putter was used to test the adhesion of live and dead yeast cells that were cultured in the lab for two days. The tests were carried out in an environmental scanning electron microscope (ESEM) – a high-powered microscope that allows the user to image specimens when they are wet, meaning cells can be visualised in their natural environment.

Once inside the ESEM, the yeast cells were delicately placed on three surfaces of varying – tungsten, gold and indium tin oxide – and nudged with the micro putter until they were removed from their spot. The microscope was able to capture images of the movement of the cells whilst the tiny deflection of the putter was recorded as a measure of the cell's adhesion.

The adhesion force of a living cell was approximately 19 micronewtons, three times the force of a dead cell which had a value of approximately six micronewtons, confirming the 'cell adhesion model'.

"We hope the micro putter can be used to evaluate the actual health conditions of cells in the future. Combined with a single cell surgery technique, the micro putter could help to understand the mechanisms of disease and develop effective new drugs," continued Shen.

Explore further: New terahertz device could strengthen security

More information: The published version of the paper "Single cell adhesion force measurement for cell viability identification by using AFM cantilever based micro putter" Shen et al 2011 Meas. Sci. Technol. 22 (11) 115802 will be freely available online from 5 October 2011. It will be available at iopscience.iop.org/0957-0233/22/11/115802

Related Stories

Micropatterned material surface controls cell orientation

Oct 13, 2009

Cells could be orientated in a controlled way on a micro-patterned surface based upon a delicate material technique, and the orientation could be semi-quantitatively described by some statistical parameters, as suggested ...

Manipulating cells with a micro-suction cup

Aug 12, 2010

Researchers at the Institute for Biomedical Engineering have devised a novel method to pick up and relocate individual cells with a microtip without damaging them. In the future this could be used to verify ...

Research Reveals How Materials Direct Cell Response

Apr 18, 2005

New Georgia Tech research indicates how cells “sense” differences in biomaterial surface chemistry. The findings explain how biomaterials influence cells and could be used to develop new classes of materials to improve ...

The closest look ever at native human tissue

Dec 05, 2007

Seeing proteins in their natural environment and interactions inside cells has been a long-standing goal. Using an advanced microscopy technique called cryo-electron tomography, researchers from the European ...

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.