Scientists first to characterize barley plant-stem rust spore 'communication'

Oct 13, 2011

Traditional thought has held that disease had to penetrate a plant to initiate resistance; however, two Washington State University scientists have established that a barley plant recognizes an invader and begins to marshal its defenses within five minutes of an attack.

The discovery, along with the scientists' successful of disease-fighting genes and the pathogen signal recognized by the plant, could help to revolutionize the battle against cereal crop enemies, such as stem rust. Unless carefully controlled, stem rust has the potential to destroy a grower's entire crop, and historically, has caused the loss of millions of bushels of grain and millions of dollars. And, new threats are on the horizon. For example, Ug99 is an evolving wheat pathogen that poses a dangerous threat to global food security, especially in developing countries.

"Now that we understand how the plant-pathogen interaction mechanism works, we hope we can manipulate it to build resistance in plants," said Andy Kleinhofs, professor of in the Department of Crop and Soil Sciences. With further research, he added, that understanding could lead to new, more effective ways to battle such as stem rust and Ug99.

"It will take time for research on Ug99 to see if the mechanism works the same as in this case," Kleinhofs said. "If it is the same, we could use the technology to defeat Ug99."

Kleinhofs and Assistant Research Professor Jayaveeramuthu Nirmala focused their research on understanding Rpg1, a gene that provides barley with resistance to the pathogen that causes stem rust. Rpg1 is unique in that it has provided durable resistance in barley over the past 60 years, Kleinhofs said. His laboratory team previously successfully cloned that resistance gene, which when combined with the recently discovered genes that activate it, delivers a one-two punch against stem rust.

It was while monitoring the activity of those combined genes that Kleinhofs and Nirmala observed and documented "communication" between the barley plants and stem rust spores.

In the process, the researchers identified the proteins recognized by the Rpg1 and saw the series of signals that tell the plant to protect itself. "It is clear that the plant recognizes the pathogen within five minutes of the spore touching the leaf," said Camille Steber, a research geneticist for the U.S. Department of Agriculture's Agricultural Research Service at WSU.

The plant's initial reaction to being attacked is invisible to the human eye, Nirmala said, but she succeeded in monitoring subtle changes in plant chemistry that demonstrated the plant not only recognized it was under attack but was starting to muster its resistance. Visible signs of the spore's impact come within an hour, when pad-like lesions connecting the spore to the leaf cell begin to appear.

A reviewer of Kleinhofs' and Nirmala's recent paper in the Proceedings of the National Academy of Sciences said the discovery "will probably open a whole new avenue of research of plant-pathogen interactions."

Steber said the discovery is a game-changer for plant scientists.

"This is the first example where the lock-and-key of cereal-pathogen response is clearly understood," she said.

Kleinhofs called his and Nirmala's understanding of the signaling that was going on between plant and pathogen "one of those 'Eureka!' moments."

"Three is still a lot to be learned," he added. "As with any new discovery, more questions arise than have actually been answered, but it is a good start."

Explore further: New insights into how different tissues establish their biological and functional identities

Provided by Washington State University

not rated yet

Related Stories

Scientists fight stem rust UG99 before it becomes a threat

Nov 18, 2008

(PhysOrg.com) -- Wheat breeders and plant pathologists at Montana State University are part of a global effort to develop varieties of wheat resistant to a new fungus. UG99, a stem rust strain that was first discovered in ...

Researchers find rust resistance genes in wild grasses

Oct 21, 2008

(PhysOrg.com) -- University of Adelaide researchers have identified new sources of stem and leaf rust resistance in wild grass relatives of wheat sourced mostly from the 'fertile crescent' of the Middle East.

Elusive rust resistance genes located

Dec 06, 2006

The discovery of a DNA marker for two key rust resistance genes is enabling plant breeders around the world to breed more effective rust resistant wheat varieties.

Uncovering the mystery of a major threat to wheat

Jun 01, 2010

Agricultural Research Service (ARS) scientists have solved a longstanding mystery as to why a pathogen that threatens the world's wheat supply can be so adaptable, diverse and virulent. It is because the fungus that causes ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...