Examining rice genes for rice blast resistance

October 17, 2011

U.S. Department of Agriculture (USDA) scientists have characterized the molecular mechanism behind some plants' ability to resist rice blast, a fungal disease that affects cereal grain crops such as rice, wheat, rye and barley and can cause yield losses of up to 30 percent. The fungus has been found in 85 countries worldwide, including the United States.

Agricultural Research Service (ARS) plant pathologist Yulin Jia at the agency's Dale Bumpers National Rice Research Center in Stuttgart, Ark., determined how those molecular mechanisms work and how resistance genes evolved. Jia studies the molecular relationship between rice and the fungi responsible for the diseases rice blast and sheath blight.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of promoting international food security.

Jia and his colleagues have also mapped two major blast-resistance genes from a rice cultivar from China. Their findings have been reported in the journals Euphytica, Plant Science, and Phytopathology.

A few years ago, Jia visited the Institute (IRRI) in Los Baños, the Philippines, and was able to bring back more than 100 rice lines that contained different genes that confer resistance to the blast fungus. Similarly, IRRI scientists have imported rice germplasm from the ARS collection for their research. Some of this germplasm has shown some resistance to sheath blight strains that occur in their environment, according to Jia.

Genes are constantly changing in order to survive, and over the years the genes in rice and fungi have co-evolved. Resistance is relative to the specific pathogens. For instance, not all humans are immune to flu viruses, because new strains of flu emerge constantly. That is also true for strains of fungi and the rice varieties they infect. So as time goes by, the old may not work against the new fungal strains.

Explore further: Scientists identify genetic resistance to rice sheath blight

More information: Read more about this in the October 2011 issue of Agricultural Research magazine. www.ars.usda.gov/is/AR/archive/oct11/food1011.htm

Related Stories

New genetic tool helps improve rice

August 19, 2010

U.S. Department of Agriculture (USDA) scientists have developed a new tool for improving the expression of desirable genes in rice in parts of the plant where the results will do the most good.

Transplanted corn gene protects rice

October 18, 2005

Kansas State University scientists say they've demonstrated resistance to bacterial streak disease in maize can be transferred to rice.

Genomics Research Focuses on Rice Variety Improvement

July 1, 2008

Crop varieties can be improved through the study of genomics without creating genetically transformed varieties. That is the mission of a multistate research project led by the University of Arkansas System’s Division of ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(Phys.org)—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.