Restraint improves dielectric performance, lifespan

Oct 25, 2011

Just as a corset improves the appearance of its wearer by keeping everything tightly together, rigidly constraining insulating materials in electrical components can increase their energy density and decrease their rates of failure.

Many electrical components, like wiring, are typically surrounded by a material that keeps the electricity from passing to its surroundings. These are known as dielectrics, and can take many forms, with the most common being "soft" materials known as polymers. However, since these dielectrics are constantly being submitted to , they tend to break down.

Duke University engineers have demonstrated that rigidly constraining dielectric materials can greatly improve their performance and potentially lengthen their lifespans. This insight follows their discovery earlier this year of the exact mechanism that causes soft dielectric materials to break down in the presence of electricity.

"We found that increasing voltage can cause polymers to physically crease and even crater at the , eventually causing them to break down," said Xuanhe Zhao, assistant professor of mechanical engineering and at Duke's Pratt School of Engineering. "So we thought if we wrapped the polymer tightly, that would prevent this creasing from occurring. Experiments proved this hypothesis to be true."

The results of the Duke study were published online in the journal Applied Physical Letters.

In their experiments, the Duke researchers constrained three different soft polymer dielectrics with epoxy. Epoxy is a type of polymer created by the reaction of a resin with a hardening agent. When mixed, a hard and inflexible coating is formed.

"The rigid epoxy acts as a mechanical constraint," Zhao said. "Since it adheres tightly to the dielectric, it prevents the deformation that would normally occur. We found that this constraint can greatly enhance the ability of the component to carry greater voltage, increasing its by more than ten times."

Zhao said that scientists have been working for years to develop new dielectrics based on new types of or polymers to increase energy density and solve the problem of breakdown.

"We believe that there can be a drastically different approach to achieving these higher energy-dense soft dielectrics," Zhao said. "Our experiments show that the energy density of these soft materials can be significantly enhanced by proper mechanical constraints of the dielectrics, and not necessarily a new type of dielectric material."

The team is currently testing newer methods for achieving even tighter constraints to increase the energy density of polymer .

Explore further: Technique simplifies the creation of high-tech crystals

Related Stories

High-performance energy storage

Jul 03, 2007

North Carolina State University physicists have recently deduced a way to improve high-energy-density capacitors so that they can store up to seven times as much energy per unit volume than the common capacitor.

Soft Materials Buckle Up for Measurement

Jun 22, 2006

Buckling under pressure can be a good thing, say materials scientists at the National Institute of Standards and Technology. Writing in the June 13 issue of Macromolecules, they report a new method to evalua ...

Storing a Lightning Bolt in Glass for Portable Power

May 05, 2009

(PhysOrg.com) -- Materials researchers at Penn State University have reported the highest known breakdown strength for a bulk glass ever measured. Breakdown strength, along with dielectric constant, determines ...

Engineers Identify Materials for nMOS Metal Gate Electrodes

Mar 30, 2006

Sematech engineers have identified metal electrode materials that can be used to build reliable nMOS transistors with high‑k dielectric – a major milestone in the quest to fabricate working CMOS devices using metal ...

Recommended for you

Exotic state of matter propels quantum computing theory

16 minutes ago

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

'Comb on a chip' powers new atomic clock design

18 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

18 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

18 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

20 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0