Proteins could offer novel antibiotic target

Oct 06, 2011
The structure of the Cps2A protein from Streptococcus pneumoniae. The structure is shown as a cartoon, with the two domains that make up the protein shown in blue and green. The carrier-lipid that is usually attached to the immature WTA chain is shown in purple, with a phosphate group in orange and red.

Bacteria are single-celled organisms that inhabit almost every environment on the planet, including the bodies of humans and animals. The cell wall maintains the structural integrity of the cell, and enables the bacteria to survive in its chosen environment. In disease-causing bacteria (pathogens) it also plays a role in the progression of the disease. A group of scientists from Newcastle University and the Nara Institute of Science and Technology in Japan have used Diamond to identify a group of proteins that enable certain bacteria to build effective cell walls. These proteins may provide a novel antibiotic target for a range of disease-causing bacteria.

Gram-positive bacteria include many important . In these bacteria, the cell walls contain two major components: peptidoglycan, which is targeted by some of the most successful anti-bacterial compounds and anionic polymers, which attach to the peptidoglycan. The polymers include wall teichoic acids (WTAs), which play a wide range of roles within the cell including control of autolytic activity, antigenicity and innate immune recognition and . How the WTAs physically connect to the peptidoglycan is vital to the final cell wall architecture and how it functions, but currently the enzyme that carries out this important step is unknown.

The group have identified a widespread family of proteins, LytR-Cps2A-Psr (LCPs) that could play a role in attaching WTAs to the cell wall. They carried out structural and of the proteins, including use of Diamond’s MX beamlines. The results suggested that this family of proteins co-ordinate the final stage in the process of connecting the WTA to the bacterial cell wall.

“Studying the final step of bacterial wall synthesis has been very challenging for several reasons. We can’t reconstitute this complex system in vitro, but we have evidence that suggests the LCP family of proteins are the final step in building the cell wall. This discovery, together with structural information on the substrate and some clues to the likely catalytic mechanism, provides us with a highly attractive new target for drug discovery programmes.” said Jon Marles-Wright, Newcastle University.

Explore further: Brand new technology detects probiotic organisms in food

More information: A widespread family of bacterial cell wall assembly proteins, Yoshikazu Kawai, Jon Marles-Wright, Robert M Cleverley, Robyn Emmins, Shu Ishikawa, Masayoshi Kuwano, Nadja Heinz, Nhat Khai Bui, Christopher N Hoyland, Naotake Ogasawara, Richard J Lewis, Waldemar Vollmer, Richard A Daniel and Jeff Errington, The EMBO Journal, September 2011 doi:10.1038/emboj.2011.358

Provided by Diamond Light Source

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

New paper sheds light on bacterial cell wall recycling

Sep 08, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell ...

Bacteria build walls to withstand antibiotics

Nov 01, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New res ...

Scientists trick bacteria with small molecules

Oct 07, 2010

( -- A team of Yale University scientists has engineered the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the ...

Bacterial roundabouts determine cell shape

Jun 03, 2011

Almost all bacteria owe their structure to an outer cell wall that interacts closely with the supporting MreB protein inside the cell. As scientists at the Max Planck Institute for Biochemistry and at the ...

Recommended for you

Fighting bacteria—with viruses

1 hour ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0