Prehistoric greenhouse data from ocean floor could predict Earth's future

Oct 27, 2011
Kenneth MacLeod, MU professor of geological sciences, says changes in ocean circulation patterns 70 million years ago could help scientists understand the consequences of modern increases in greenhouse gases. Credit: MU News Bureau

New research from the University of Missouri indicates that Atlantic Ocean temperatures during the greenhouse climate of the Late Cretaceous Epoch were influenced by circulation in the deep ocean. These changes in circulation patterns 70 million years ago could help scientists understand the consequences of modern increases in greenhouse gases.

"We are examining from several past greenhouse climate intervals so that we can understand better the interactions among the atmosphere, the oceans, the biosphere, and climate," said Kenneth MacLeod, professor of geological sciences in the College of Arts and Science. "The Late Cretaceous Epoch is a textbook example of a greenhouse climate on earth, and we have evidence that a northern water mass expanded southwards while the climate was cooling. At the same time, a warm, mass that had been present throughout the greenhouse interval disappeared from the tropical Atlantic."

The study found that at the end of the Late Cretaceous greenhouse interval, water sinking around Greenland was replaced by surface water flowing north from the South Atlantic. This change caused the North Atlantic to warm while the rest of the globe cooled. The change started about five million years before the that ended the .

To track circulation patterns, the researchers focused on "neodymium," an element that is taken up by fish teeth and bones when a fish dies and falls to the ocean floor. MacLeod said the ratio of two isotopes of neodymium acts as a natural tracking system for water masses. In the area where a water mass forms, the water takes on a neodymium ratio like that in rocks on nearby land. As the water moves through the ocean, though, that ratio changes little. Because the fish take up the neodymium from water at the seafloor, the ratio in the fish fossils reflects the values in the area where the water sank into the . Looking at changes through time and at many sites allowed the scientists to track movements.

While high atmospheric levels of carbon dioxide caused Late Cretaceous warmth, MacLeod notes that ocean circulation influenced how that warmth was distributed around the globe. Further, ocean circulation patterns changed significantly as the climate warmed and cooled.

"Understanding the degree to which climate influences circulation and vice versa is important today because carbon dioxide levels are rapidly approaching levels most recently seen during ancient greenhouse times," said MacLeod. "In just a few decades, humans are causing changes in the composition of the atmosphere that are as large as the changes that took millions of years to occur during geological climate cycles."

Explore further: Better forecasts for sea ice under climate change

More information: The paper, "Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval," was published in the October online edition of the journal Nature Geoscience.

Related Stories

Dramatic ocean circulation changes revealed

Jan 14, 2011

The unusually cold weather this winter has been caused by a change in the winds. Instead of the typical westerly winds warmed by Atlantic surface ocean currents, cold northerly Arctic winds are influencing ...

Salty oceans provide early warning for climate change

Jun 08, 2007

Monitoring the saltiness of the ocean water could provide an early indicator of climate change. Significant increases or decreases in salt in key areas could forewarn of climate change in 10 to 20 years time. Presenting their ...

Ice core studies confirm accuracy of climate models

Sep 11, 2008

An analysis has been completed of the global carbon cycle and climate for a 70,000 year period in the most recent Ice Age, showing a remarkable correlation between carbon dioxide levels and surprisingly abrupt changes in ...

Recommended for you

Better forecasts for sea ice under climate change

Nov 25, 2014

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jsdarkdestruction
1 / 5 (1) Oct 28, 2011
Good job kenneth, i hope you continue your research and can restore some of the dignity and honor to university of missouri destroyed by oliver k manuel, former chemistry emiritus and now convicted child molester who's global warming conspiracy theory is so fantastical you'd have to be taking acid to consider it even possible. Thank you

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.