Plastic fantastic—the future of biodegradables

Oct 17, 2011

Poly-3-hydroxybutyrate (PHB) is a thermoplastic polyester which occurs naturally in bacteria as Ralstonia eutropha and Bacillus megaterium. Even though PHB is biodegradable and is not dependent on fossil resources, this bioplastic has been traditionally too expensive to produce to replace petroleum-based plastics. New research reported in BioMed Central's open access journal Microbial Cell Factories describes an alternative method of producing PHB in microalgae.

PHB is synthesised in from acetyl-CoA using the enzymes ß-ketothiolase, acetoacetyl-CoA reductase and PHB synthase. The genes coding for these proteins were inserted into a diatom (Phaeodactylum tricornutum) resulting in expression of the enzymes and synthesis of PHB in cytosolic granules. After only seven days, about 10% of the dried weight of the diatoms was PHB.

Dr. Franziska Hempel and Prof Uwe Maier from the LOEWE-Centre Synmikro in Marburg, and Prof Alexander Steinbüchel from Westfälische Wilhelms-Universität, explained, "Millions of tons of petroleum-based plastic are consumed every year worldwide causing immense amounts of waste that can take thousands of years to biodegrade – if at all. Bacterial fermentation is expensive and while people have introduced a similar system into plants, plants are relatively slow growing and biofuel agriculture uses up valuable land. P. tricornutum needs little more than light and water to grow and can produce similar amounts of PHB to the plant systems in weeks rather than months."

In the quest to find biodegradable and renewable sources of these photosynthetic bioreactors may well provide an answer.

Explore further: Researchers successfully clone adult human stem cells

More information: Microalgae as bioreactors for bioplastic production, Franziska Hempel, Andrew S. Bozarth, Nicole Lindenkamp, Andreas Klingl, Stefan Zauner, Uwe Linne, Alexander Steinbuchel and Uwe G. Maier, Microbial Cell Factories (in press)

add to favorites email to friend print save as pdf

Related Stories

Trained bacteria convert bio-wastes into plastic

Nov 19, 2010

Dutch researcher Jean-Paul Meijnen has 'trained' bacteria to convert all the main sugars in vegetable, fruit and garden waste efficiently into high-quality environmentally friendly products such as bioplastics.

'Green' plastics could help reduce carbon footprint

Feb 11, 2009

More than 20 million tons of plastic are placed in U.S. landfills each year. Results from a new University of Missouri study suggest that some of the largely petroleum-based plastic may soon be replaced by a nonpolluting, ...

The sweetness of biodegradable plastics

Dec 14, 2010

Environmentalists around the world agree ― plastic bags are choking our landfills and polluting our seas. Now a Tel Aviv University researcher is developing new laboratory methods using corn starch and sugar to help ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...