Plastic fantastic—the future of biodegradables

October 17, 2011

Poly-3-hydroxybutyrate (PHB) is a thermoplastic polyester which occurs naturally in bacteria as Ralstonia eutropha and Bacillus megaterium. Even though PHB is biodegradable and is not dependent on fossil resources, this bioplastic has been traditionally too expensive to produce to replace petroleum-based plastics. New research reported in BioMed Central's open access journal Microbial Cell Factories describes an alternative method of producing PHB in microalgae.

PHB is synthesised in from acetyl-CoA using the enzymes ß-ketothiolase, acetoacetyl-CoA reductase and PHB synthase. The genes coding for these proteins were inserted into a diatom (Phaeodactylum tricornutum) resulting in expression of the enzymes and synthesis of PHB in cytosolic granules. After only seven days, about 10% of the dried weight of the diatoms was PHB.

Dr. Franziska Hempel and Prof Uwe Maier from the LOEWE-Centre Synmikro in Marburg, and Prof Alexander Steinbüchel from Westfälische Wilhelms-Universität, explained, "Millions of tons of petroleum-based plastic are consumed every year worldwide causing immense amounts of waste that can take thousands of years to biodegrade – if at all. Bacterial fermentation is expensive and while people have introduced a similar system into plants, plants are relatively slow growing and biofuel agriculture uses up valuable land. P. tricornutum needs little more than light and water to grow and can produce similar amounts of PHB to the plant systems in weeks rather than months."

In the quest to find biodegradable and renewable sources of these photosynthetic bioreactors may well provide an answer.

Explore further: 'Green' plastics could help reduce carbon footprint

More information: Microalgae as bioreactors for bioplastic production, Franziska Hempel, Andrew S. Bozarth, Nicole Lindenkamp, Andreas Klingl, Stefan Zauner, Uwe Linne, Alexander Steinbuchel and Uwe G. Maier, Microbial Cell Factories (in press)

Related Stories

'Green' plastics could help reduce carbon footprint

February 11, 2009

More than 20 million tons of plastic are placed in U.S. landfills each year. Results from a new University of Missouri study suggest that some of the largely petroleum-based plastic may soon be replaced by a nonpolluting, ...

Trained bacteria convert bio-wastes into plastic

November 19, 2010

Dutch researcher Jean-Paul Meijnen has 'trained' bacteria to convert all the main sugars in vegetable, fruit and garden waste efficiently into high-quality environmentally friendly products such as bioplastics.

The sweetness of biodegradable plastics

December 14, 2010

Environmentalists around the world agree ― plastic bags are choking our landfills and polluting our seas. Now a Tel Aviv University researcher is developing new laboratory methods using corn starch and sugar to help ...

Recommended for you

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.