Three new planets and a mystery object discovered outside our solar system

Oct 27, 2011

(PhysOrg.com) -- Three planets -- each orbiting its own giant, dying star -- have been discovered by an international research team led by a Penn State University astronomer. Using the Hobby-Eberly Telescope, astronomers observed the planets' parent stars -- called HD 240237, BD +48 738, and HD 96127 -- tens of light years away from our solar system. One of the massive, dying stars has an additional mystery object orbiting it, according to team leader Alex Wolszczan, an Evan Pugh Professor of Astronomy and Astrophysics at Penn State, who, in 1992, became the first astronomer ever to discover planets outside our solar system.

The new research is expected to shed light on the evolution of around dying stars. It also will help astronomers to understand how metal content influences the behavior of dying stars. The research will be published in December in the . The first author of the paper is Sara Gettel, a graduate student from Penn State's Department of , and the paper is co-authored by three graduate students from Poland.

The three newly-discovered planetary systems are more evolved than our own solar system. "Each of the three stars is swelling and has already become a red giant -- a that soon will gobble up any planet that happens to be orbiting too close to it," Wolszczan said. "While we certainly can expect a similar fate for our own Sun, which eventually will become a red giant and possibly will consume our Earth, we won't have to worry about it happening for another five-billion years." Wolszczan also said that one of the massive, dying stars -- BD +48 738 -- is accompanied not only by an enormous, Jupiter-like planet, but also by a second, mystery object. According to the team, this object could be another planet, a low-mass star, or -- most interestingly -- a brown dwarf, which is a star-like body that is intermediate in mass between the coolest stars and . "We will continue to watch this strange object and, in a few more years, we hope to be able to reveal its identity," Wolszczan said.

The three dying stars and their accompanying planets have been particularly useful to the research team because they have helped to illuminate such ongoing mysteries as how dying stars behave depending on their metallicity. "First, we know that giant stars like HD 240237, BD +48 738, and HD 96127 are especially noisy. That is, they appear jittery, because they oscillate much more than our own, much-younger Sun. This noisiness disturbs the observation process, making it a challenge to discover any companion planets," Wolszczan said. "Still, we persevered and we eventually were able to spot the planets orbiting each massive star."

Once Wolszczan and his team had confirmed that HD 240237, BD +48 738, and HD 96127 did indeed have planets orbiting around them, they measured the metal content of the stars and found some interesting correlations. "We found a negative correlation between a star's metallicity and its jitteriness. It turns out that the less metal content each star had, the more noisy and jittery it was," Wolszczan explained. "Our own Sun vibrates slightly too, but because it is much younger, its atmosphere is much less turbulent."

Wolszczan also pointed out that, as stars swell to the red-giant stage, planetary orbits change and even intersect, and close-in planets and moons eventually get swallowed and sucked up by the dying star. For this reason, it is possible that HD 240237, BD +48 738, and HD 96127 once might have had more planets in orbit, but that these planets were consumed over time. "It's interesting to note that, of these three newly-discovered stars, none has a planet at a distance closer than 0.6 astronomical units -- that is, 0.6 the distance of the Earth to our Sun," Wolszczan said. "It might be that 0.6 is the magic number at which any closer distance spells a planet's demise."

Observations of dying stars, their metal content, and how they affect the planets around them could provide clues about the fate of our own . "Of course, in about five-billion years, our Sun will become a red giant and likely will swallow up the inner and the planets' accompanying moons. However, if we're still around in, say, one-billion to three-billion years, we might consider taking up residence on Jupiter's moon, Europa, for the remaining couple billion years before that happens," Wolszczan said. "Europa is an icy wasteland and it is certainly not habitable now, but as the Sun continues to heat up and expand, our Earth will become too hot, while at the same time, Europa will melt and may spend a couple billion years in the Goldilocks zone -- not to hot, not to- old, covered by vast, beautiful oceans."

Explore further: The entropy of black holes

Related Stories

New planet discovered in Trinary star system

Jul 14, 2011

Until recently, astronomers were highly skeptical of whether or not planets should be possible in multiple star systems. It was expected that the constantly varying gravitational force would eventually tug ...

Brown dwarf pair mystifies astronomers

Dec 21, 2009

(PhysOrg.com) -- Two brown dwarf-sized objects orbiting a giant old star show that planets may assemble around stars more quickly and efficiently than anyone thought possible, according to an international ...

Richest planetary system discovered (w/ Video)

Aug 24, 2010

(PhysOrg.com) -- Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising ...

Heavy metal stars produce Earth-Like planets

Sep 30, 2011

New research reveals that, like their giant cousins, rocky planets are more likely to be found orbiting high metallicity stars. Furthermore, these planets are more plentiful around low mass stars. This could ...

Spitzer Finds Hints of Planet Birth Around Dead Star

Apr 05, 2006

NASA's Spitzer Space Telescope has uncovered new evidence that planets might rise up out of a dead star's ashes. The infrared telescope surveyed the scene around a pulsar, the remnant of an exploded star, and ...

'Hot Jupiter' planets unlikely to have moons

Aug 23, 2010

(PhysOrg.com) -- Planets of the major type so far found outside our solar system are unlikely to have moons, according to new research reported in the August 20 issue of The Astrophysical Journal Letters.

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Astronomers unveil secrets of giant elliptical galaxies

Sep 12, 2014

New findings of how giant elliptical galaxies move have been discovered by an international team of astronomers using the newly installed Multi Unit Spectroscopic Explorer (MUSE) at the European Southern Observatory's (ESO) ...

Exploring the cosmic X-ray background

Sep 12, 2014

You are likely familiar with the cosmic microwave background. This background is a thermal remnant of the big bang. Because of the expansion of the universe, this remnant energy has a temperature of about ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Adam
3.5 / 5 (2) Oct 27, 2011
Wolszczan is wrong about the time span of a habitable Europa, but it's a nice image.
omatumr
1 / 5 (11) Oct 27, 2011
Congratulations, Wolszczan!

Your 1992 discovery with Frail of planets orbiting the pulsar remains of a star will eventually go down in history as the turning point in our understanding of the Cosmos and our place in it!

That 1992 discovery [1] was the foundation of our papers on Earth's changing climate [2,3] and the evolution of:

a.) Life on Earth [4],
b.) The Sun [5], and
c.) The Cosmos [6]

1. www.nature.com/na...5a0.html

2. http://arxiv.org/.../0501441

3. http://arxiv.org/pdf/0905.0704

4. http://dl.dropbox...5079.pdf

5. http://arxiv.org/...2.1499v1

6. http://journalofc...102.html

Again, congratulations on being one of few astronomers who avoided the curse of post-modern science: "May you live in uninteresting times!"

With kind regards,
Oliver K. Manuel
http://myprofile....anuelo09