Recognizing pathogenic invaders

Oct 21, 2011
Figure 1: The β-glucan recognition protein (yellow) from Plodia interpunctella¬†recognizes and binds to a triple helical β-glucan of invading pathogens. Credit: 2011 Yoshiki Yamaguchi

Researchers in Japan have determined the structural basis of the molecular defense system that protects insects from pathogens1, which provides clarity on the molecular binding that underpins this defense system.

Insects express pattern recognition receptors (PRRs) that provide an innate ability to detect and . One of the PRRs, β-glucan recognition protein (βGRP), recognizes and binds to carbohydrate molecules called β-glucans that are synthesized by pathogens. Since little is known about how these molecules bind to each other, or about how the binding specificity is achieved, Yoshiki Yamaguchi of the RIKEN Advanced Science Institute and his colleagues used genetic engineering to produce the β-glucan-binding regions of βGRPs from two moth species, Bombix mori and Plodia interpunctella. They determined the structure of the receptors, both on their own and when bound to a β-glucan called laminarihexaose, using x-ray crystallography. 

Analysis of the crystal structures revealed that the moth receptors recognize a complex of three laminarihexaoses bound to each other (Fig. 1), and that their conformation barely changes when they are bound to laminarihexaoses. The analysis also revealed that the proteins from both species bind to laminarihexaoses in an identical way, via a characteristic structural motif, suggesting that the entire βGRP family shares a common binding mechanism.  

Yamaguchi and colleagues also revealed that the laminarihexaose molecules attach to each other with hydrogen bonds that form an ordered and highly stable helical structure. Six precisely arranged monosaccharide (sugar) residues, spread across three chains, interact with the receptor binding site simultaneously, and are essential for the interaction. 

To verify their findings, the researchers introduced point mutations at specific locations in the binding region of the Plodia interpunctella receptor. Four of the mutations abolished binding of β-glucan altogether, and four others weakened the binding interaction.

Typically, interactions between carbohydrates and proteins are relatively weak because they involve just two or three monosaccharide residues. The finding that the interaction between the receptors and β-glucan involves six residues explains why this interaction is so strong; it also explains the high specificity of the receptors.

Mammals do not produce β-glucans, but they circulate in the bloodstream of patients with diseases such as invasive aspergillosis, a rapidly progressive and often fatal fungal infection.

“Our findings will be used for the development of diagnosis and monitoring tools with high specificity toward a variety of β-glucans,” says Yamaguchi. “Detecting β-glucans in patients may be helpful for identifying infectious fungi, which could in turn be useful to tailor-make treatments for patients.”

Explore further: Why plants don't get sunburn

More information: Kanagawa, M. Structural insights into recognition of triple-helical β-glucan by insect fungal receptor. Journal of Biological Chemistry 286, 29158–29165 (2011).

add to favorites email to friend print save as pdf

Related Stories

Regulating nuclear signalling in cancer

Aug 04, 2011

Research findings published recently in Nature Communications describe a completely new way in which TGFβ receptors regulate nuclear signalling. The findings are significant given that this new signalling pathway seems ...

A signal change for antifungal agents

Sep 13, 2010

Chemical-genomic profiling of bioactive therapeutic compounds reveals therapeutically exploitable signaling activity at fungal cell membranes.

How receptors talk to G proteins

Aug 10, 2011

(PhysOrg.com) -- The mechanism by which cells respond to stimuli and trigger hormonal responses, as well as the senses of sight, smell, and taste, has for the first time been brought into focus with the help ...

Carbohydrate acts as tumor suppressor

Jul 06, 2009

Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specialized complex sugar molecules (glycans) that anchor cells into place act as tumor suppressors in breast and prostate cancers. These ...

Recommended for you

Why plants don't get sunburn

23 hours ago

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.