Optimal modulation of ion channels rescues neurons associated with epilepsy

Oct 18, 2011

New research successfully reverses epilepsy-associated pathology by using a sophisticated single-cell modeling paradigm to examine abnormal cell behavior and identify the optimal modulation of channel activity. The study, published in the October 18th issue of Biophysical Journal, describes a procedure that may be useful for rescuing function in organs with excitable cells, such as the heart and pancreas.

Ion channels regulate the flow of ions into and out of the cell and are absolutely critical for a wide range of , including transmission of signals in the nervous system. Disrupting function can have . For example, the severe epilepsy is characterized by spontaneous and recurrent seizures that are thought to be linked with ion channel dysfunction.

Dr. Erik Fransén from the Royal Institute of Technology in Stockholm was interested in examining neuronal excitability at the single-cell level and using sophisticated computational modeling to discover a way to restore normal neuronal function. "We studied ion channel alteration related to epilepsy," explains Dr. Fransén. "Previously, we showed that dysfunction of a specific potassium channel, KA, was linked to synchronicity, one of the key elements of epilepsy. In this current study, we focused on improving the functional behavior of the neuron and reversing pathological changes."

Dr. Fransén and colleagues studied the modulation of KA by substances known to influence channel activation. Sophisticated ion channel simulations allowed the researchers to examine known modulatory substances and to determine the most beneficial concentration of the modulators for reduction of abnormal neuron activity. Importantly, the optimization method revealed specific combinations of modulators that reversed pathological changes in KA observed in a patient with epilepsy.

The authors suggest that the optimization procedure may have widespread application. "The method we developed to functionally correct a pathological neuron can be used for other brain diseases where alterations of ion channels are involved," concludes Dr. Fransén. "It may also be used in other organs with excitable cells, such as the heart or pancreas. For instance, atrial fibrillation is one of the most common sustained cardiac arrhythmias with an underlying pathology of cell hyperexcitability due to, among other things, alterations of ion channels."

Explore further: Four billion-year-old chemistry in cells today

More information: Reversing Nerve Cell Pathology by Optimizing Modulatory Action on Target Ion Channels, Biophysical Journal, Volume 101, October 2011 1871–187. doi: 10.1016/j.bpj.2011.08.055

Related Stories

Possible link between different forms of epilepsy found

Jun 16, 2008

Carnegie Mellon University neuroscientists have identified what may be the first known common denominator underlying inherited and sporadic epilepsy — a disruption in an ion channel called the BK channel. Although BK channels ...

Brain cell potassium regulator is studied

Aug 17, 2006

U.S. scientists say proteins regulating brain-cell activity by controlling potassium ion flow behave more like volume controls than on-off switches.

Complex channels

Jan 24, 2007

The messages passed in a neuronal network can target something like 100 billion nerve cells in the brain alone. These, in turn communicate with millions of other cells and organs in the body. How, then, do whole cascades ...

Recommended for you

Nature inspires a greener way to make colorful plastics

7 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

9 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Bullet 'fingerprints' to help solve crimes

9 hours ago

Criminals don't just have to worry about their own fingerprints these days: because of a young forensic scientist at The University of Western Australia, they should also be very concerned about their bullets' ...

User comments : 0