Nanotubes key to microscopic mechanics

October 25, 2011

In the latest issue of Elsevier's Materials Today, researchers from Spain and Belgium reported on the innovative use of carbon nanotubes to create mechanical components for use in a new generation of micro-machines. While the electronics industry has excelled in miniaturizing components, with individual elements approaching the nanoscale (or a billionth of a meter), reducing the size of mechanical systems has proved much more challenging.

One of the difficulties of shrinking mechanical devices is that the conventional techniques used to produce individual components are not useful when it comes to creating intricate shapes on the microscale. One promising technique is electrical discharge machining (EDM), which uses a spark of electricity to blast away the unwanted material to create complex shapes. However, this method requires that the target material is electrically conductive, limiting the use of EDM on hard, ceramic materials.

But now, by implanting carbon nanotubes in , the ceramic of choice, Manuel Belmonte and colleagues have been able to increase the electrical conductivity of the material by 13 orders of magnitude and have used EDM to produce a microgear without compromising the production time or integrity of the apparatus.

Carbon nanotubes rose to prominence in the early 1990s when their range of remarkable properties became apparent. These include phenomenal strength and electrical properties that can be tailored to suit. Each tube is made from a rolled up sheet of in a honeycomb-like structure. Unrolled, this sheet is also known as graphene, the innovative material which was the subject of the 2010 . Implanted inside a ceramic, these nanotubes form a conductive network that greatly reduces .

The of the composite material is much higher, while the mechanical properties of the ceramic are preserved and wear resistance is significantly improved. As the corresponding author, Dr Manuel Belmonte, clarifies; this breakthrough will "allow the manufacture of intricate 3D components, widening the potential use of advanced ceramics and other insulating materials". The team hopes that such nanocomposite materials will find use in emerging applications, such as, microturbines, microreactors, and bioimplants.

Explore further: Oak Ridge Associated Universities funds research to develop conductive ceramic materials

More information: This article is "Carbon nanofillers for machining insulating ceramics" ( doi: 10.1016/S1369-7021(11)70214-0 ) by Olivier Malek, Jesús González-Julián, Jef Vleugels, Wouter Vanderauwera, Bert Lauwers, Manuel Belmonte. It appears in Materials Today, Volume 14, Issue 10, Page 496 (2011)

Related Stories

Taming carbon nanotubes

February 7, 2011

Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to ...

Electromechanics also operates at the nanoscale

May 9, 2011

What limits the behaviour of a carbon nanotube? This is a question that many scientists are trying to answer. Physicists at University of Gothenburg, Sweden, have now shown that electromechanical principles are valid also ...

Carbon nanotube composites for enzymes and cosmetics

September 6, 2011

Japanese researchers have developed a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including enzymes ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.