Study sheds light on the mysterious structure of water-air interface

Oct 03, 2011
This figure shows the imaginary part of second order nonlinear susceptibility spectra of water surfaces: (a) Experimental HOD (blue line), (b) simulated HOD (red). The concentration of isotopes is H2O : HOD : D2O = 1: 6: 9. Credit: RIKEN

Findings by Japanese researchers at the RIKEN Advanced Science Institute and their colleagues at Tohoku University and in the Netherlands have resolved a long-standing debate over the structure of water molecules at the water surface. Published in the Journal of the American Chemical Society, the research combines theoretical and experimental techniques to pinpoint, for the first time, the origin of water's unique surface properties in the interaction of water pairs at the air-water interface.

The most abundant compound on the Earth's surface, water is essential to life and has shaped the course of human civilization. As perhaps the most common liquid interface, the air-water interface offers insights into the surface properties of water in everything from atmospheric and environmental chemistry, to , to regenerative medicine. Yet despite its ubiquity, the structure of this interface has remained shrouded in mystery.

At the heart of this mystery are two broad bands in the vibrational spectrum for surface water resembling those of bulk ice and . Whether these bands are the result of hydrogen bonds themselves, of intra-molecular coupling between within a single water molecule, or of inter-molecular coupling between adjacent , is a source of heated debate. One popular but controversial hypothesis suggests one of the spectral bands corresponds to water forming an actual tetrahedral "ice-like" structure at the surface, but this interpretation raises issues of its own.

This is a snapshot in the MD simulation trajectory of the HOD / D2O mixture that shows the water pair at the surface. White, green and red represent H, D and O atoms, respectively. Credit: RIKEN

The researchers set out to resolve this debate through a comprehensive study combining theory and experiment. For their experiments, they applied a powerful spectroscopy technique developed at RIKEN to selectively pick out and rapidly measure their spectra. To eliminate coupling effects, which are difficult to reproduce in simulations, they used water diluted with D2O () and HOD (water with one hydrogen atom, H, replaced by deuterium, D). Doing so eliminates coupling of OH bonds within a single molecule (since there is only one OH bond) and reduces the overall concentration of OH bonds in the solution, suppressing intermolecular coupling.

With other influences removed, the researchers at last pinpointed the source of water's unique surface structure not in an "ice-like" structure, but in the strong hydrogen bonding between water pairs at the outermost surface. The extremely good match between experimental and theoretical results confirms this conclusion, at long last bringing clarity to the debate over the structure of the water surface and setting the groundwork for fundamental advances in a range of scientific fields.

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Finding may end a 30-year scientific debate

Apr 11, 2011

A chance observation by a Queen's researcher might have ended a decades-old debate about the precise way antifreeze proteins (AFP) bind to the surface of ice crystals.

Solving another mystery of an amazing water walker

Dec 10, 2007

Walking on water may seem like a miracle to humans, but it is a ho-hum for the water strider and scientists who already solved the mystery of that amazing ability. Now researchers in Korea are reporting a ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

A_Paradox
5 / 5 (1) Oct 03, 2011
a very interesting article. It would have been nice however to get a bit more explanation of what is involved with the "coupling" of OH bonds, and why the substitution of Deuterium changes the coupling propensity.

I am guessing that "coupling" involves the partial sharing of electrons so that the electrons spend more time in close proximity to each nucleus, in fact shielding the nucleii from each other so that the nucleii end up being closer together despite the fact they are positively charged. I take it that the ability of the OH pairs to couple indicates that resonance is induced wherein the two hydrogen atoms vibrate in sympathy in relation to their Oxygen partners and this facilitates the sharing and shielding. So I surmise the greater mass of deuterium atom means it can only resonate successfully witht other O-D bonds and the frequency/signal of that does not interfere [in the general sense] with the signal from the longer O-H 'hydrogen' bond.