How the Milky Way killed off its satellites

Oct 19, 2011
How the Milky Way killed off its satellites
An image of the dwarf galaxy Bootes II, one of 21 known companions to the Milky Way. Credit: V. Belokurov / SDSS collaboration

(PhysOrg.com) -- Two researchers from Observatoire Astronomique de Strasbourg have revealed for the first time the existence of a new signature of the birth of the first stars in our galaxy, the Milky Way. More than 12 billion years ago, the intense ultraviolet light from these stars dispersed the gas of our Galaxy's nearest companions, virtually putting a halt to their ability to form stars and consigning them to a dim future. Now Pierre Ocvirk and Dominique Aubert, members of the Light in the Dark Ages of the Universe (LIDAU) collaboration, have explained why some galaxies were killed off, while stars continued to form in more distant objects. The two scientists publish their results in the October issue of the letters of the journal Monthly Notices of the Royal Astronomical Society.

The first stars of the Universe appeared about 150 million years after the Big Bang. Back then, the hydrogen and filling the universe was cold enough for its atoms to be electrically neutral. As the ultraviolet (UV) light of the first stars propagated through this gas, it broke apart the proton-electron pairs that make up , returning them to the so-called plasma state they experienced in the first moments of the Universe. This process, known as reionisation, also resulted in significant heating, which had dramatic consequences: the gas became so hot that it escaped the weak gravity of the lowest mass , thereby depriving them of the material needed to form stars.

It is now widely accepted that this process can explain the small number and large ages of the stars seen in the faintest satellites of the . It also helps scientists understand why galaxies like the Milky Way have so few satellites around them – the 'missing satellites' problem. The stripping out of gas from these galaxies makes them sensitive probes of the UV radiation in the reionisation epoch.

The satellite galaxies are also relatively close, from 30000 to 900000 light-years away, which allows us to study them in great detail, something that will be enhanced by the coming generation of larger telescopes. Comparing the population of their stars in each galaxy with its position could give us a unique insight into the structure of the UV radiation emitted from the earliest stars in the Milky Way.

Until now, models for this process assumed that the radiation leading to the removal of gas from galaxy satellites was produced collectively by all the large galaxies nearby, resulting in a uniform background of . The new model put together by the two French researchers proves this assumption wrong.

Ocvirk and Aubert looked at the way the invisible 'dark matter' that makes up about 23% of the Universe structured itself with the stars in our Galaxy and its environs from shortly after the Big Bang to the present day. They used the high resolution numerical simulation Via Lactea II to model the formation of stars in gas trapped in the dark matter haloes that envelop galaxies, and then to describe how this gas reacted to UV radiation.

Pierre Ocvirk comments, "This is the first time that a model accounts for the effect of the radiation emitted by the first stars formed at the centre of the Milky Way on its satellite galaxies.

'In contrast to previous models, the radiation field produced is not uniform, but decreases in intensity as one moves away from the centre of the Milky Way.

'The satellite galaxies close to the galactic centre see their gas evaporate very quickly. They form so few stars that they can be undetectable with current telescopes. At the same time, the more remote experience on average a weaker irradiation. Therefore they manage to keep their gas longer, and form more stars. As a consequence they are easier to detect and appear more numerous."

The new model appears to be a close match to observations of our Galaxy and its neighbourhood and suggests that the first of our galaxy played a major role in the photo-evaporation of the satellite galaxies' gas, adds Dr Ocvirk. "It is not large nearby galaxies but our own that caused the demise of its tiny neighbours, asphyxiating them through its intense radiation."

Explore further: Best view yet of merging galaxies in distant universe

More information: The results appear in the paper "A signature of the internal reionisation of the Milky Way?", Pierre Ocvirk and Dominique Aubert, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be seen at arxiv.org/abs/1108.1193

Related Stories

New insights into the 'hidden' galaxies of the universe

Jun 14, 2011

A unique example of some of the lowest surface brightness galaxies in the universe have been found by an international team of astronomers lead by the Niels Bohr Institute. The galaxy has lower amounts of ...

When Dwarfs Gave Way to Giants

May 17, 2006

The first galaxies were small - about 10,000 times less massive than the Milky Way. Billions of years ago, those mini-furnaces forged a multitude of hot, massive stars. In the process, they sowed the seeds ...

'Dead' galaxies are not so dead after all

May 30, 2011

(PhysOrg.com) -- University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

Recommended for you

What lit up the universe?

5 hours ago

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

Eta Carinae: Our Neighboring Superstars

13 hours ago

(Phys.org) —The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it ...

Best view yet of merging galaxies in distant universe

17 hours ago

Using the Atacama Large Millimeter/submillimeter Array, and other telescopes, an international team of astronomers has obtained the best view yet of a collision that took place between two galaxies when the ...

Image: Hubble stirs up galactic soup

Aug 25, 2014

(Phys.org) —This new NASA/ESA Hubble Space Telescope image shows a whole host of colorful and differently shaped galaxies; some bright and nearby, some fuzzy, and some so far from us they appear as small ...

Spectacular supernova's mysteries revealed

Aug 22, 2014

(Phys.org) —New research by a team of UK and European-based astronomers is helping to solve the mystery of what caused a spectacular supernova in a galaxy 11 million light years away, seen earlier this ...

Supernova seen in two lights

Aug 22, 2014

(Phys.org) —The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA's Spitzer Space Telescope and Chandra ...

User comments : 0