How the Milky Way killed off its satellites

Oct 19, 2011
How the Milky Way killed off its satellites
An image of the dwarf galaxy Bootes II, one of 21 known companions to the Milky Way. Credit: V. Belokurov / SDSS collaboration

(PhysOrg.com) -- Two researchers from Observatoire Astronomique de Strasbourg have revealed for the first time the existence of a new signature of the birth of the first stars in our galaxy, the Milky Way. More than 12 billion years ago, the intense ultraviolet light from these stars dispersed the gas of our Galaxy's nearest companions, virtually putting a halt to their ability to form stars and consigning them to a dim future. Now Pierre Ocvirk and Dominique Aubert, members of the Light in the Dark Ages of the Universe (LIDAU) collaboration, have explained why some galaxies were killed off, while stars continued to form in more distant objects. The two scientists publish their results in the October issue of the letters of the journal Monthly Notices of the Royal Astronomical Society.

The first stars of the Universe appeared about 150 million years after the Big Bang. Back then, the hydrogen and filling the universe was cold enough for its atoms to be electrically neutral. As the ultraviolet (UV) light of the first stars propagated through this gas, it broke apart the proton-electron pairs that make up , returning them to the so-called plasma state they experienced in the first moments of the Universe. This process, known as reionisation, also resulted in significant heating, which had dramatic consequences: the gas became so hot that it escaped the weak gravity of the lowest mass , thereby depriving them of the material needed to form stars.

It is now widely accepted that this process can explain the small number and large ages of the stars seen in the faintest satellites of the . It also helps scientists understand why galaxies like the Milky Way have so few satellites around them – the 'missing satellites' problem. The stripping out of gas from these galaxies makes them sensitive probes of the UV radiation in the reionisation epoch.

The satellite galaxies are also relatively close, from 30000 to 900000 light-years away, which allows us to study them in great detail, something that will be enhanced by the coming generation of larger telescopes. Comparing the population of their stars in each galaxy with its position could give us a unique insight into the structure of the UV radiation emitted from the earliest stars in the Milky Way.

Until now, models for this process assumed that the radiation leading to the removal of gas from galaxy satellites was produced collectively by all the large galaxies nearby, resulting in a uniform background of . The new model put together by the two French researchers proves this assumption wrong.

Ocvirk and Aubert looked at the way the invisible 'dark matter' that makes up about 23% of the Universe structured itself with the stars in our Galaxy and its environs from shortly after the Big Bang to the present day. They used the high resolution numerical simulation Via Lactea II to model the formation of stars in gas trapped in the dark matter haloes that envelop galaxies, and then to describe how this gas reacted to UV radiation.

Pierre Ocvirk comments, "This is the first time that a model accounts for the effect of the radiation emitted by the first stars formed at the centre of the Milky Way on its satellite galaxies.

'In contrast to previous models, the radiation field produced is not uniform, but decreases in intensity as one moves away from the centre of the Milky Way.

'The satellite galaxies close to the galactic centre see their gas evaporate very quickly. They form so few stars that they can be undetectable with current telescopes. At the same time, the more remote experience on average a weaker irradiation. Therefore they manage to keep their gas longer, and form more stars. As a consequence they are easier to detect and appear more numerous."

The new model appears to be a close match to observations of our Galaxy and its neighbourhood and suggests that the first of our galaxy played a major role in the photo-evaporation of the satellite galaxies' gas, adds Dr Ocvirk. "It is not large nearby galaxies but our own that caused the demise of its tiny neighbours, asphyxiating them through its intense radiation."

Explore further: Quest for extraterrestrial life not over, experts say

More information: The results appear in the paper "A signature of the internal reionisation of the Milky Way?", Pierre Ocvirk and Dominique Aubert, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be seen at arxiv.org/abs/1108.1193

Related Stories

New insights into the 'hidden' galaxies of the universe

Jun 14, 2011

A unique example of some of the lowest surface brightness galaxies in the universe have been found by an international team of astronomers lead by the Niels Bohr Institute. The galaxy has lower amounts of ...

When Dwarfs Gave Way to Giants

May 17, 2006

The first galaxies were small - about 10,000 times less massive than the Milky Way. Billions of years ago, those mini-furnaces forged a multitude of hot, massive stars. In the process, they sowed the seeds ...

'Dead' galaxies are not so dead after all

May 30, 2011

(PhysOrg.com) -- University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.