How the Milky Way killed off its satellites

Oct 19, 2011
How the Milky Way killed off its satellites
An image of the dwarf galaxy Bootes II, one of 21 known companions to the Milky Way. Credit: V. Belokurov / SDSS collaboration

( -- Two researchers from Observatoire Astronomique de Strasbourg have revealed for the first time the existence of a new signature of the birth of the first stars in our galaxy, the Milky Way. More than 12 billion years ago, the intense ultraviolet light from these stars dispersed the gas of our Galaxy's nearest companions, virtually putting a halt to their ability to form stars and consigning them to a dim future. Now Pierre Ocvirk and Dominique Aubert, members of the Light in the Dark Ages of the Universe (LIDAU) collaboration, have explained why some galaxies were killed off, while stars continued to form in more distant objects. The two scientists publish their results in the October issue of the letters of the journal Monthly Notices of the Royal Astronomical Society.

The first stars of the Universe appeared about 150 million years after the Big Bang. Back then, the hydrogen and filling the universe was cold enough for its atoms to be electrically neutral. As the ultraviolet (UV) light of the first stars propagated through this gas, it broke apart the proton-electron pairs that make up , returning them to the so-called plasma state they experienced in the first moments of the Universe. This process, known as reionisation, also resulted in significant heating, which had dramatic consequences: the gas became so hot that it escaped the weak gravity of the lowest mass , thereby depriving them of the material needed to form stars.

It is now widely accepted that this process can explain the small number and large ages of the stars seen in the faintest satellites of the . It also helps scientists understand why galaxies like the Milky Way have so few satellites around them – the 'missing satellites' problem. The stripping out of gas from these galaxies makes them sensitive probes of the UV radiation in the reionisation epoch.

The satellite galaxies are also relatively close, from 30000 to 900000 light-years away, which allows us to study them in great detail, something that will be enhanced by the coming generation of larger telescopes. Comparing the population of their stars in each galaxy with its position could give us a unique insight into the structure of the UV radiation emitted from the earliest stars in the Milky Way.

Until now, models for this process assumed that the radiation leading to the removal of gas from galaxy satellites was produced collectively by all the large galaxies nearby, resulting in a uniform background of . The new model put together by the two French researchers proves this assumption wrong.

Ocvirk and Aubert looked at the way the invisible 'dark matter' that makes up about 23% of the Universe structured itself with the stars in our Galaxy and its environs from shortly after the Big Bang to the present day. They used the high resolution numerical simulation Via Lactea II to model the formation of stars in gas trapped in the dark matter haloes that envelop galaxies, and then to describe how this gas reacted to UV radiation.

Pierre Ocvirk comments, "This is the first time that a model accounts for the effect of the radiation emitted by the first stars formed at the centre of the Milky Way on its satellite galaxies.

'In contrast to previous models, the radiation field produced is not uniform, but decreases in intensity as one moves away from the centre of the Milky Way.

'The satellite galaxies close to the galactic centre see their gas evaporate very quickly. They form so few stars that they can be undetectable with current telescopes. At the same time, the more remote experience on average a weaker irradiation. Therefore they manage to keep their gas longer, and form more stars. As a consequence they are easier to detect and appear more numerous."

The new model appears to be a close match to observations of our Galaxy and its neighbourhood and suggests that the first of our galaxy played a major role in the photo-evaporation of the satellite galaxies' gas, adds Dr Ocvirk. "It is not large nearby galaxies but our own that caused the demise of its tiny neighbours, asphyxiating them through its intense radiation."

Explore further: Estimating the magnetic field of an exoplanet

More information: The results appear in the paper "A signature of the internal reionisation of the Milky Way?", Pierre Ocvirk and Dominique Aubert, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be seen at

Related Stories

New insights into the 'hidden' galaxies of the universe

Jun 14, 2011

A unique example of some of the lowest surface brightness galaxies in the universe have been found by an international team of astronomers lead by the Niels Bohr Institute. The galaxy has lower amounts of ...

When Dwarfs Gave Way to Giants

May 17, 2006

The first galaxies were small - about 10,000 times less massive than the Milky Way. Billions of years ago, those mini-furnaces forged a multitude of hot, massive stars. In the process, they sowed the seeds ...

'Dead' galaxies are not so dead after all

May 30, 2011

( -- University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

Recommended for you

Estimating the magnetic field of an exoplanet

2 hours ago

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

2 hours ago

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

Study suggests black hole jets get their power from spin

6 hours ago

( —A team of space scientists working in Italy has found more evidence that suggests the energy needed to emit jets from supermassive black holes comes from the spin of the black hole itself. In ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.