New membrane lipid measuring technique may help fight disease

Oct 09, 2011

Could controlling cell-membrane fat play a key role in turning off disease?

Researchers at the University of Illinois at Chicago think so, and a biosensor they've created that measures levels may open up new pathways to disease treatment.

Wonhwa Cho, distinguished professor of chemistry, and his coworkers engineered a way to modify proteins to fluoresce and act as sensors for .

Their findings are reported in Nature Chemistry, online on Oct. 9.

"Lipid molecules on cell membranes can act as switches that turn on or off protein-protein interactions affecting all cellular processes, including those associated with disease," says Cho. "While the exact mechanism is still unknown, our hypothesis is that lipid molecules serve sort of like a sliding switch."

Cho said once lipid concentrations reach a certain threshold, they trigger reactions, including disease-fighting immune responses. Quantifying concentration in a living cell and studying its location in real time can provide a powerful tool for understanding and developing new ways to combat a range of maladies from inflammation, cancer and diabetes to .

"It's not just the presence of lipid, but the number of lipid molecules that are important for turning on and off biological activity," said Cho.

While visualizing with fluorescent proteins isn't new, Cho's technique allows quantification by using a hybrid that fluoresces only when it binds specific lipids. His lab worked with a lipid known as PIP2 -- an important fat molecule involved in many . Cho's sensor binds to PIP2 and gives a clear signal that can be quantified through a fluorescent microscope.

The result is the first successful quantification of membrane lipids in a living cell in real time.

"We had to engineer the protein in such a way to make it very stable, behave well, and specifically recognizes a particular lipid," Cho said. He has been working on the technique for about a decade, overcoming technical obstacles only about three years ago.

Cho hopes now to create a tool kit of biosensors to quantify most, if not all lipids.

"We'd like to be able to measure multiple lipids, simultaneously," he said. "It would give us a snapshot of all the processes being regulated by the different lipids inside a cell."

Explore further: Structure of sodium channels different than previously believed

Related Stories

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

Researchers ID molecular link key for cell growth

Jan 24, 2011

(PhysOrg.com) -- When a cell is preparing to grow or replicate, it starts the way a monarch planning to expand his territory might: by identifying and marshaling the necessary resources, loading them onto ...

New route to map brain fat

May 04, 2011

Mapping the fat distribution of the healthy human brain is a key step in understanding neurological diseases, in general, and the neurodegeneration that accompanies Alzheimer's disease in particular. Antonio Veloso and colleagues, ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...