Magnetic attraction: NIST microchip demonstrates concept of 'MRAM for biomolecules'

Oct 14, 2011
Micrograph of magnetic microfluidic chip developed by the National Institute of Standards and Technology and University of Colorado Boulder. Brief pulses of electrical current in the two orange lines generate a magnetic field to turn individual spin valves (blue bars) on and off, moving a magnetic bead up or down the “ladder.” Credit: W. Altman/CU and NIST

(PhysOrg.com) -- Researchers from the National Institute of Standards and Technology (NIST) and University of Colorado Boulder (CU) have developed a low-power microchip that uses a combination of microfluidics and magnetic switches to trap and transport magnetic beads. The novel transport chip may have applications in biotechnology and medical diagnostics.

A key innovation in the new chip is the use of magnetic switches like those in a computer random access memory. As described in a new paper, the NIST/CU team used the chip to trap, release and transport that potentially could be used as transport vehicles for biomolecules such as DNA.

Conventional systems use pumps and valves to move particles and liquids through channels. Magnetic particle transport offer a new approach to microfluidics but generally require continuous power and in some cases cooling to avoid sample damage from excessive heating. The NIST/CU technology eliminates these drawbacks while offering the possibility for random access two-dimensional control and a memory that lasts even with the power off.

The demo chip features two adjacent lines of 12 thin-film magnet switches called spin valves, commonly used as in read heads of high-density computer disk drives. In this case, however, the spin valves have been optimized for magnetic trapping. Pulses of electric current are used to switch individual spin valve magnets “on” to trap a bead, or “off” to release it, and thereby move the bead down a ladder formed by the two lines (see video clip). The beads start out suspended in salt water above the valves before being trapped in the array.

This video is not supported by your browser at this time.

“It’s a whole new way of thinking about microfluidics,” says NIST physicist John Moreland. “The cool thing is it’s a switchable permanent magnet—after it’s turned on it requires no power. You beat heat by switching things quickly, so you only need power for less than a microsecond.”

NIST researchers previously demonstrated that spin valves could be used to trap and rotate particles and recently were awarded two patents related to the idea of a magnetic chip.

Magnetic tags are used in bioassays such as protein and DNA purification and cell breakdown and separation. The chip demonstration provides a conceptual foundation for a more complex (MRAM) for molecular and cellular manipulation. For example, programmable microfluidic chips might simultaneously control a large number of beads, and the attached molecules or cells, to assemble “smart” tags with specified properties, such as an affinity for a given protein at a specific position in the array. NIST is also interested in developing cellular and molecular tags for magnetic resonance imaging (MRI) studies in which individual cells, such as cancer cells or stem cells, would be tagged with a smart magnetic biomarker that can be tracked remotely in an MRI scanner, Moreland says. Automated spin valve chips might also be used in portable instruments for rapid medical diagnosis or DNA sequencing.

The lead author of the new paper, Wendy Altman, did the research at NIST as a CU graduate student working on her doctoral thesis. Another author, Bruce Han, was a CU student in NIST’s Summer Undergraduate Research Fellowship (SURF) program.

Explore further: Better thermal-imaging lens from waste sulfur

More information: W.R. Altman, J. Moreland, S.E. Russek, B.W. Han and V. M. Bright. 2011. Controlled transport of superparamagnetic beads with spin-valves. Applied Physics Letters, Vol. 99, Issue 14, Oct. 3.

Related Stories

'NMR on a chip' features magnetic mini-sensor

Feb 19, 2008

A super-sensitive mini-sensor developed at the National Institute of Standards and Technology can detect nuclear magnetic resonance (NMR) in tiny samples of fluids flowing through a novel microchip. The prototype ...

Magnetic tape analysis 'sees' tampering in detail

Jul 23, 2007

The National Institute of Standards and Technology has developed an improved version of a real-time magnetic microscopy system that converts evidence of tampering on magnetic audio and video tapes—erasing, ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

2 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

17 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...