Understanding lethal synthesis

Oct 07, 2011
Understanding lethal synthesis
The two different possible forms (in grey and yellow) of the crucial reaction intermediate, at the active site of citrate synthase, from modelling of the reaction in the enzyme

(PhysOrg.com) -- The chemical reaction which makes some poisonous plants so deadly has been described by researchers at the University of Bristol in a paper published today in Angewandte Chemie.

Professor Adrian Mulholland in the School of Chemistry and colleagues successfully analyzed why a particular toxic product originating from sodium fluoroacetate (a colourless salt used as a rat poison) is formed in an enzyme.

Professor Mulholland said: “The reaction could go in one of two ways, and only one of those two makes a poison.  The difference is very subtle, just in terms of which one of two hydrogen atoms is removed by the enzyme in the reaction.

 “This process gives rise to 'lethal synthesis', that is where something non-toxic is converted into a poison in the body.  It is responsible for the lethal toxicity of fluoroacetate to humans and other mammals and explains, for example, why plants such as gifblaar in South Africa and Gastrolobium bilobum (heart-leaved poison) in Australia kill sheep and cattle, and why ‘1080’ is such a potent rat poison.”

The Bristol team used high-level quantum mechanics/molecular mechanics (QM/MM) modelling to successfully explain how the enzyme citrate synthase (CS) converts fluoroacetyl-CoA from fluoroacetate to fluoricitrate, which is what makes fluoroacetate toxic.  Only the particular form of fluorocitrate made by the enzyme is poisonous; if it made the mirror image molecule instead, the result would not be a poison.  The Bristol team’s calculations show why the enzyme produces this form.

CS performs the first reaction in the citric acid cycle, a series of enzyme-catalysed which is of central importance in all living cells.  In this reaction, citrate, a six-carbon compound, is formed from a two-carbon acetate in the form of acetyl-CoA and the four-carbon acceptor compound oxaloacetate.

However, if fluoroacetyl-CoA from fluoroacetate is present instead of acetyl-CoA, fluorocitrate is formed.  The particular form (isomer) of fluorocitrate, and only this isomer, goes on to react with and inhibit (block) aconitase, the next enzyme in the citric acid cycle.  This causes citrate to build-up in tissue and blood, turning off most of the energy supply to cells and resulting in tissue damage and death.

By explaining the conversion of fluoroacetyl-CoA to fluorocitrate by CS, the Bristol research has shed light on an archetypal selectivity problem.  Greater understanding of such problems could assist the prediction of selectivity in enzyme-catalyzed reactions which has potential practical applications in catalyst design and drug metabolism.

The research is published today in , the journal of the German Chemical Society.  The study has been classed as a Very Important Paper (VIP) according to the evaluation of three referees.

Explore further: Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

More information: “Lethal Synthesis” of Fluorocitrate by Citrate Synthase Explained through QM/MM Modeling’ by Marc W. van der Kamp, John D. McGeagh, and Adrian J. Mulholland in Angewandte Chemie. onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/

Related Stories

Enzyme enhances, erases long-term memories in rats

Mar 04, 2011

 (PhysOrg.com) -- Even long after it is formed, a memory in rats can be enhanced or erased by increasing or decreasing the activity of a brain enzyme, say researchers supported, in part, by the National ...

Microbe processes carbon via new metabolic pathway

Jan 21, 2011

(PhysOrg.com) -- A Dead Sea microbe has been found to use a previously unknown metabolic pathway to metabolize fats as a source of carbon to synthesize carbohydrates. This suggests there may be other undiscovered pathways ...

New knowledge will boost fight against superbug

Sep 07, 2011

A breakthrough in the fight against drug-resistant infections is one step closer following the discovery of the structure of NDM-1: a vicious form of bacteria that is currently resistant to the most powerful antibiotics available.

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...