Ionic liquid catalyst helps turn emissions into fuel

October 6, 2011
This image shows biofuel production (left) compared to fuel produced via artificial synthesis. Crops takes in CO2, water and sunlight to create biomass, which then is transferred to a refinery to create fuel. In the artificial photosynthesis route, a solar collector or windmill collects energy that powers an electrolyzer, which converts CO2 to a synthesis gas that is piped to a refinery to create fuel. Credit: Image courtesy of Dioxide Materials

An Illinois research team has succeeded in overcoming one major obstacle to a promising technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.

University of Illinois chemical and biomolecular engineering professor Paul Kenis and his research group joined forces with researchers at Dioxide Materials, a , to produce a catalyst that improves . The company, in the university Research Park, was founded by retired chemical engineering professor Richard Masel. The team reported their results in the journal Science.

Artificial photosynthesis is the process of converting into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from .

In plants, photosynthesis uses solar energy to convert carbon dioxide (CO2) and water to sugars and other hydrocarbons. Biofuels are refined from sugars extracted from crops such as corn. However, in artificial photosynthesis, an electrochemical cell uses energy from a or a wind turbine to convert CO2 to simple carbon fuels such as formic acid or methanol, which are further refined to make ethanol and other fuels.

"The key advantage is that there is no competition with the food supply," said Masel, a co-principal investigator of the paper and CEO of Dioxide Materials, "and it is a lot cheaper to transmit electricity than it is to ship biomass to a refinery."

However, one big hurdle has kept artificial photosynthesis from vaulting into the mainstream: The first step to making fuel, turning into carbon monoxide, is too energy intensive. It requires so much electricity to drive this first reaction that more energy is used to produce the fuel than can be stored in the fuel.

The Illinois group used a novel approach involving an ionic liquid to catalyze the reaction, greatly reducing the energy required to drive the process. The ionic liquids stabilize the intermediates in the reaction so that less electricity is needed to complete the conversion.

The researchers used an as a flow reactor, separating the gaseous CO2 input and oxygen output from the liquid electrolyte catalyst with gas-diffusion electrodes. The cell design allowed the researchers to fine-tune the composition of the electrolyte stream to improve reaction kinetics, including adding ionic liquids as a co-catalyst.

"It lowers the overpotential for CO2 reduction tremendously," said Kenis, who is also a professor of mechanical science and engineering and affiliated with the Beckman Institute for Advanced Science and Technology. "Therefore, a much lower potential has to be applied. Applying a much lower potential corresponds to consuming less energy to drive the process."

Next, the researchers hope to tackle the problem of throughput. To make their technology useful for commercial applications, they need to speed up the reaction and maximize conversion.

"More work is needed, but this research brings us a significant step closer to reducing our dependence on fossil fuels while simultaneously reducing CO2 emissions that are linked to unwanted climate change," Kenis said.

Explore further: Sunlight turns carbon dioxide to methane

More information: The paper, "Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials," is available online at www.sciencemag.org/content/early/2011/09/28/science.1209786

Related Stories

Sunlight turns carbon dioxide to methane

March 5, 2009

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

Machine Converts CO2 into Gasoline, Diesel, and Jet Fuel

November 23, 2009

(PhysOrg.com) -- Researchers at Sandia National Laboratories have built a machine that uses the sun's energy to convert carbon dioxide waste from power plants into transportation fuels such as gasoline, diesel, and jet fuel. ...

MIT researchers harness the sun's power

May 12, 2010

For decades, scientists have been trying to replicate the process of photosynthesis -- the process by which plants convert sunlight into energy. The Economist reports that Angela Belcher and her colleagues at the Massachusetts ...

Putting sunshine in the tank

July 5, 2011

Working with the Universities of East Anglia, York and Nottingham and using nanotechnology 100,000 times smaller than the thickness of a human hair, the researchers are working on harnessing the vast energy of the Sun to ...

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ecotek2u
not rated yet Oct 06, 2011
Abstract:
Electroreduction of carbon dioxide (CO2)a key component of artificial photosynthesishas largely been stymied by the impractically high overpotentials necessary to drive the process. Here, we report an electrocatalytic system that reduces CO2 to carbon monoxide (CO) at overpotentials below 0.2 volts (V). The system relies on an ionic liquid electrolyte to lower the energy of the (CO2) intermediate, most likely by complexation, and thereby lower the initial reduction barrier. Then the silver cathode catalyzes formation of the final products. Formation of gaseous CO is first observed at an applied voltage of 1.5 V, just slightly above the minimum (i.e., equilibrium) voltage of 1.33 V. The system continued producing CO for at least 7 hours at Faradaic efficiencies over 96%.
For those who want some real info.
ecotek2u
not rated yet Oct 06, 2011
Abstract:
Electroreduction of carbon dioxide (CO2)a key component of artificial photosynthesishas largely been stymied by the impractically high overpotentials necessary to drive the process. Here, we report an electrocatalytic system that reduces CO2 to carbon monoxide (CO) at overpotentials below 0.2 volts (V). The system relies on an ionic liquid electrolyte to lower the energy of the (CO2) intermediate, most likely by complexation, and thereby lower the initial reduction barrier. Then the silver cathode catalyzes formation of the final products. Formation of gaseous CO is first observed at an applied voltage of 1.5 V, just slightly above the minimum (i.e., equilibrium) voltage of 1.33 V. The system continued producing CO for at least 7 hours at Faradaic efficiencies over 96%.
For those who want some real info.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.