New insights into insulin resistance could lead to better drugs for diabetics

Oct 21, 2011

Research published in the October Molecular and Cellular Biology moves us closer to developing drugs that could mitigate diabetes.

Diabetes afflicts an estimated 26 million Americans, while 79 million have prediabetes. In other words, one in three Americans confronts this disease. Diabetes raises the and by as much as fourfold, and it is the leading cause of blindness among adults 20-74. It is also the leading cause of kidney failure.
 
In earlier research, four years ago another team of researchers showed that they could boost insulin sensitivity in experimental rodents by giving the animals a drug called myriocin. People with diabetes have a condition called , which renders them poorly able to process sugar. That results in high blood sugar, which damages the blood vessels, leading to many of diabetes’ ills. In their study, that team, led by Johannes M. Aerts of the University of Amsterdam, observed a decrease in a compound called ceramide, which sits on cell membranes in the circulatory system, which they postulated was responsible for the rise in insulin sensitivity.
 
In the new study, Xian-Cheng Jiang of Downstate Medical Center, Brooklyn, NY, and his collaborators set out to confirm this earlier work, using a genetic approach.
The new research provides strong evidence that ceramide was not causing insulin sensitivity, but that another membrane-bound compound, sphingomyelin, might be doing so.
 
Ceramide is the substrate for the last step in a five step cascade that produces sphingomyelin. In that step an enzyme called sphingomyline synthase 2 (SMS2) cleaves ceramide to produce sphingomyelin. The first enzyme in this pathway is called serine palmitoyltransferase (SPT).
 
To test the hypothesis that ceramide is involved in modulating insulin resistance the researchers used for each of these enzymes. They postulated that (partially) knocking out the first enzyme in the cascade would decrease ceramide levels while knocking out the last enzyme in the sphingomyelin pathway would boost ceramide levels, since that enzyme uses ceramide to produce sphingomyelin. Thus, SPT knockout mice would have greater insulin sensitivity, while SMS knockout mice would have reduced insulin sensitivity.
 
Surprisingly, while ceramide levels changed as predicted, that change did not influence insulin sensitivity, which was higher in both groups.
 
The research has important implications for drug development for mitigating . Myriocin proved highly toxic and major efforts to modify the drug to reduce that toxicity have been fruitless. Myriocin’s toxicity probably stems from the fact that it inhibits the first step of the sphingomyelin biosynthetic pathway, affecting all the downstream biology, says Jiang. The discovery that knocking out the last step in the biosynthetic pathway improves means that drug treatments could target that last enzyme, SMS, leaving the rest of that biosynthetic pathway to function normally.

Explore further: Molecular gate that could keep cancer cells locked up

More information: Z. Li, et al., 2011. Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol. Cell. Biol. 31:4205-4218.

Provided by American Society for Microbiology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Impaired fat-burning gene worsens diabetes

Feb 07, 2008

Researchers at the Swedish medical university Karolinska Institutet have in collaboration with researchers from Finland, China, Japan and the US discovered new cellular mechanisms that lead to in insulin resistance in people ...

Tale of 2 mice pinpoints major factor for insulin resistance

May 16, 2011

The road to type 2 diabetes is paved with insulin resistance, a condition often associated with obesity in which the hormone begins to fail at its job helping to convert sugars to energy. Researchers at Joslin Diabetes Center ...

Low doses of a red wine ingredient fight diabetes in mice

Oct 02, 2007

Even relatively low doses of resveratrol—a chemical found in the skins of red grapes and in red wine—can improve the sensitivity of mice to the hormone insulin, according to a report in the October issue of Cell Metabolism. As ins ...

Apelin hormone injections powerfully lower blood sugar

Nov 04, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that t ...

Recommended for you

Molecular gate that could keep cancer cells locked up

8 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

12 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0