Impact study: Princeton model shows fallout of a giant meteorite strike

Oct 19, 2011 by Morgan Kelly
The Princeton model shows (at left) that the structure of the Earth's surface at the time of the meteorite impact that caused the Chicxulub crater in Mexico would have placed the Deccan Traps in India far west of the crater's antipodal point, instead of directly opposite of the impact. Correspondingly, the model shows (at right) that the meteorite struck far east of the antipodal point for the Deccan Traps, which are remnants of large volcanoes thought to have contributed to the mass extinction event at the end of the Cretaceous period. The model also revealed that the Chicxulub impact, when the Earth's surface and shape are considered, would have likely been too small to cause the Deccan Traps. (Images by Conor Myhrvold)

( -- Seeking to better understand the level of death and destruction that would result from a large meteorite striking the Earth, Princeton University researchers have developed a new model that can not only more accurately simulate the seismic fallout of such an impact, but also help reveal new information about the surface and interior of planets based on past collisions.

Princeton researchers created the first model to take into account Earth's elliptical shape, surface features and ocean depths in simulations of how seismic waves generated by a meteorite collision would spread across and within the planet. Current projections rely on models of a featureless spherical world with nothing to disrupt the meteorite's impact, the researchers report in the October issue of .

The researchers -- based in the laboratory of Jeroen Tromp, the Blair Professor of Geology in Princeton's Department of Geosciences -- simulated the meteorite strike that caused the Chicxulub crater in Mexico, an impact 2 million times more powerful than a hydrogen bomb that many scientists believe triggered the mass extinction of the dinosaurs ago. The team's rendering of the planet showed that the impact's seismic waves would be scattered and unfocused, resulting in less severe ground displacement, tsunamis, and seismic and volcanic activity than previously theorized.

The Princeton simulations also could help researchers gain insight into the unseen surface and interior details of other planets and moons, the authors reported. The simulations can pinpoint the strength of the meteorite's antipodal focus -- the area of the globe opposite of the crater where the energy from the initial collision comes together like a second, smaller impact. The researchers found this point is determined by how the features and composition of the smitten orb direct and absorb the seismic waves. Scientists could identify the planet or moon's characteristics by comparing a crater to the remnants of the antipodal point and calculating how the impact waves spread.

Impact study: Princeton model shows fallout of a giant meteorite strike
Princeton researchers created the first model to consider the Earth's elliptical shape and surface features in predicting the fallout from a massive meteorite impact. A film based on the Princeton model shows that the impact's seismic waves be uneven and slightly broken, meeting in the area of the globe opposite of the impact in clusters with much lower energy. (Image courtesy of Matthias Meschede)

Lead author Matthias Meschede of the University of Munich developed the model at Princeton through the University's Visiting Student Research Collaborators program with co-authors Conor Myhrvold, who earned his bachelor's degree from Princeton in 2011, and Tromp, who also is director of Princeton's Institute for Computational Science and Engineering and a professor of applied and computational mathematics. Meschede describes the findings as follows:

"We have developed the first model to account for how Earth's surface features and shape would influence the spread of seismic activity following a meteorite impact. For the Earth, these calculations are usually made using a smooth, perfect sphere model, but we found that the surface features of a planet or a moon have a huge effect on the aftershock a large meteorite will have, so it's extremely important to take those into account.

"After a meteorite impact, seismic waves travel outward across the Earth's surface like after a stone is thrown in water. These waves travel all the way around the globe and meet in a single point on the opposite side from the impact known as the antipode. Our model shows that because the Earth is elliptical and its surface is heterogeneous those waves travel with different speeds in different areas, changing where the waves end up on the other side of the world and the waves' amplitude when they get there. These waves also are influenced by the interior. The effect on the opposite side is a result of the complete structure.

Impact study: Princeton model shows fallout of a giant meteorite strike
The Princeton researchers report that previous seismic models used a featureless, spherical Earth that overestimates a meteorite's impact and effect. A film based on that model suggests the impact's energy would travel in concentric waves that come together on the other side of the Earth like a second, smaller impact. (Image courtesy of Matthias Meschede)

"We began by asking whether the meteorite that hit the Earth near Chicxulub could be connected to other late-Cretaceous mass-extinction theories. For example, there's a prominent theory that the meteorite triggered huge volcanic eruptions that changed the climate. These eruptions are thought to have originated in the Deccan Traps in India, approximately on the opposite side of the Earth from the Chicxulub crater at the time. Because North America was closer to Europe and India was closer to Madagascar during the Cretaceous period, however, it seemed questionable that the Deccan Traps were at the Chicxulub impact's antipode.

"Regarding the mass extinction, we saw from our measurements that a Chicxulub-sized impact alone would be too small to cause such a large volcanic eruption as what occurred at the Deccan Traps. Our model shows that the antipodal focusing of the from such an impact was hugely overestimated in previous calculations, which used a spherical-Earth model.

"The Earth's maximum ground displacement at this point has been calculated to be 15 meters, which is extreme. The first outcome of our model was that this is reduced by a large amount to about three to five meters. On the spherical model, all the waves come together at exactly one point and, as a result, have a huge amplitude. We found the waves are disturbed by surface features and take on a more ragged structure, meaning less energy is concentrated at the antipode.

"But our results go beyond Chicxulub. We can, in principle, now estimate how large a meteorite would have to have been to cause catastrophic events. For instance, we found that if you increase the radius of the Chicxulub by a factor of five while leaving its velocity and density the same, it would have been large enough to at least fracture rocks on the opposite side of the planet. Our model can be used to estimate the magnitude and effect of other major impacts in Earth's past. A similar model could be used to study other examples of antipodal structures in the solar system, such as the strange region opposite the gigantic Caloris Basin crater on Mercury.

"Also, such a can help examine the interior of a moon or planet by comparing the size of the crater to the amount of antipodal disruption -- you only need two pictures, basically. One could correlate a certain impact magnitude with the observed antipodal effect -- which is dependent on the object's surface features -- and better understand the heterogeneity of the surface by how the energy was distributed between those two points. That can reveal information about not only the surface structure of the body at the time of the impact, but also the interior, such as if the planet has a hard core."

Explore further: Fighting the global water scarcity issue

More information:… 011.05170.x/abstract

Related Stories

A New Twist to Dating an Asteroid

Aug 02, 2005

It turns out you can’t judge an asteroid by its cover, according to a recent study in the journal Nature. Or at least you can’t accurately date a certain asteroid called 433 Eros by counting the impact craters on its ...

Britain’s biggest meteorite impact found

Mar 26, 2008

Evidence of the biggest meteorite ever to hit the British Isles has been found by scientists from the University of Aberdeen and the University of Oxford.

New Blow for Dinosaur-Killing Asteroid Theory

Apr 27, 2009

( -- The enduringly popular theory that the Chicxulub crater holds the clue to the demise of the dinosaurs, along with some 65 percent of all species 65 million years ago, is challenged in a paper ...

Recommended for you

2014 Antarctic ozone hole holds steady

12 hours ago

The Antarctic ozone hole reached its annual peak size on Sept. 11, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). The size of this year's hole was 24.1 million ...

New study finds oceans arrived early to Earth

15 hours ago

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet's surface and are home to the world's greatest diversity of life. While water is essential for life ...

Magma pancakes beneath Lake Toba

15 hours ago

Where do the tremendous amounts of material that are ejected to from huge volcanic calderas during super-eruptions actually originate?

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Oct 19, 2011
proof would be in core data from the calculated antipode area.
Oct 19, 2011
This comment has been removed by a moderator.
not rated yet Oct 20, 2011
Interesting and a good piece of scientific work. Hope they will continue to improve their model.
1 / 5 (2) Oct 20, 2011
They should now scrap all those documentary simulations showing the dinosaur ELE meteor crashing into the Gulf of Mexico.
1 / 5 (1) Oct 21, 2011
Aaaahhh pooh! I still agree with Dr Michael Ramfino of NYC Univ and his televised theory. For one thing, we know that the Deccan volcanism is about the same age. Absent any other better explanation, I tend to go with the solution that we have at hand that sounds reasonable, and that is Dr Ramfino's presentation no matter who ultimately had that solution first....just KNOW that some pathoskeptic will pick THAT nit. "...and when the skies cleared, the dinosaurs were ...gone. Well not really allll gone, some just got longer feathers and a lot smaller so as to accommodate in an environment of greatly diminished food supply.
not rated yet Oct 21, 2011
Interesting, but also seems very incomplete. Discussion doesn't mention trajectory angle impact which also determines antipodal affects. Understanding that surface and density factors confuse out bound shock waves - is sort of a no-duh announcement as well.

I've been on the receiving end of modeling results most of my professional life - and early on came to realize from these models extremely high error rates, that these models are only as good as the number and accuracy of the variables for which they account. This model seems to be a very light wt. one - from an variable accounting standpoint.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.