Researchers suspend, image single DNA molecules

Oct 31, 2011 By Anne Ju
Fluorescence micrographs of elongated DNA molecules are shown here. The first row is nonmethylated DNA; the second is methylated DNA; and the third is a mixture of both. The first and second columns are images taken at different wavelengths. The third column is a composite false-color overlay of the first two columns.

(PhysOrg.com) -- Studying chemical modifications in the chromosomes of cells is akin to searching for changes in coiled spaghetti. Scientists at Cornell have figured out how to stretch out tangled strands of DNA from chromosomes, line them up and tag them to reflect different levels of modification -- which could lead to insights into how these chemical processes affect human health.

Researchers in the lab of Harold Craighead, the Charles W. Lake Professor of Engineering, used advanced nanofabrication techniques to make it easier to see how single molecules of DNA subtly change during a chemical process called methylation. A better understanding of this process could lead to further study into of numerous diseases, including Alzheimer's, Parkinson's, diabetes and cancer.

This work was published online Oct. 7 in the journal Analytical Chemistry.

DNA is normally packed tightly into the nucleus of a cell and housed into chromosomes. Within chromosomes lie many chemical perturbations that modify how genes are expressed, without anything to do with the underlying DNA sequence, explained Aline Cerf, a postdoctoral associate who led the study.

Studying these chemical modifications is a relatively new field called epigenetics. The researchers focused on a particular process in which a section of the DNA, called 5-cytosine, becomes methylated -- its chemical structure changes by the addition of a (CH3).

Cerf and colleagues first took genetic material extracted from cells and suspended it in solution. Using a technique called , they made a stamp, consisting of micrometer-sized wells, out of (PDMS). The solution of coiled was deposited onto the PDMS stamp, which was then moved at a controlled speed across a . The molecules became trapped by capillary forces in the wells, and stretched.

The result was an ordered array of elongated molecules that were transferred by contact onto a support to be imaged and studied.

In related work, the researchers also published a paper in the journal Nano Letters, Sept. 16, which details how their molecular arrays could be transferred to and imaged on substrates of graphene -- single-layer sheets of carbon atoms. This let them get even better pictures of the molecules by allowing the use of transmission electron microscopy for imaging of the added tags and the underlying base sequence in the DNA.

"The DNA molecule arrays can be tagged, separated and lined up to quickly read off the genetic and epigenetic information," Craighead said.

Researchers have in the past studied these same molecules while still contained in their nuclei, he said, but this new technique simplifies that process.

"We're no longer dealing with bundles of molecules that are hindering the information of another one," Craighead said. "We are taking the equivalent of the DNA contained in one cell and spreading it out on a surface, so you can look at all of these things and search for and study things of interest that will no longer be lost in this disordered world we were in before. Aline's results have brought us out of that world."

Explore further: Space-tested fluid flow concept advances infectious disease diagnoses

Related Stories

Scientists clarify a mechanism of epigenetic inheritance

Apr 22, 2008

Although letters representing the three billion pairs of molecules that form the “rungs” of the helical DNA “ladder” are routinely called the human “genetic code,” the DNA they comprise transmits traits across ...

Hopkins team discovers how DNA changes

Apr 14, 2011

Using human kidney cells and brain tissue from adult mice, Johns Hopkins scientists have uncovered the sequence of steps that makes normally stable DNA undergo the crucial chemical changes implicated in cancers, psychiatric ...

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Recommended for you

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.