Manipulated gatekeeper: How viruses find their way into the cell nucleus

Oct 03, 2011

Adenoviruses cause respiratory diseases and are more dangerous for humans than previously assumed. They manipulate gatekeeper molecules and infiltrate the cell nucleus with the aid of the host cell. A team of researchers headed by cell biologists and virologists from the University of Zurich have succeeded in demonstrating this mechanism in detail for the first time.

They have been around since the dawn of time and are a model of : viruses. Viruses are extremely adaptable but they have a problem: They cannot reproduce, so they smuggle their genes into suitable host cells. In the case of some viruses, the viral DNA has to enter the cell nucleus to reproduce. This has been known for almost 50 years. We know, for instance, that the disassembles its protein shell in the first step. Just how the DNA is exposed and infiltrates the , however, remained unclear despite decades of research.

A research group headed by Urs Greber, a cell biologist at the University of Zurich, has now managed to clear up these points. As the scientists recently revealed in the journal Cell Host & Microbe, viruses use the cell's own mechanisms. The adenovirus latches onto a gatekeeper molecule, which sits on the nuclear pore complex in the nucleus envelope and controls the passage in and out of the nucleus. Another protein in the nuclear pore complex binds and activates a motor protein from the kinesin family, which regulates the transport of substances near the nucleus.

Virus DNA uncoated with aid of host cell

"The motor protein is in an active condition, can bind to micro-tubules and migrate along them," says Professor Greber, explaining his team's observations. And the docked virus uses precisely this situation for its purposes. The virus binds to the kinesin and uses the energy of the motor to disrupt its own shell, which exposes the virus DNA and prepares it for transport into the nucleus. The action of the activated motor has another effect, too: The nuclear pore ruptures and becomes markedly bigger, which enables the viral DNA to enter the more easily. Surprisingly, the cell repairs the defective nuclear pore so that the virus breach in the nucleus does not leave any visible damage in its wake. The is smuggled into the nucleus practically without trace, where it can reproduce easily.

The researchers used adenoviruses for their study. Adenoviruses cause, among other things, respiratory or epidemic ocular disease. Until recently, they were thought to be relatively harmless for healthy humans. However, the results of another research group recently demonstrated that a new kind of adenovirus triggered a dreaded zoonotic disease, meaning it was transmitted from an animal to humans before spreading from one person to another.

Explore further: New research shows how pathogenic E. coli O157:H7 binds to fresh vegetables

More information: Sten Strunze, Martin F. Engelke, I-Hsuan Wang, Daniel Puntener, Karin Boucke, Sibylle Schleich, Michael Way, Philipp Schoenenberger, Christoph J. Burckhardt and Urs F. Greber: Kinesin-1-Mediated Capsid Disassembly and Disruption of the Nuclear Pore Complex Promote Virus Infection, in: Cell Host & Microbe 10, 15. September 2011, DOI:10.1016/j.chom.2011.08.010

Provided by University of Zurich

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Scavenger cells accomplices to viruses

Jul 21, 2011

Mucosal epithelia do not have any receptors on the outer membrane for the absorption of viruses like hepatitis C, herpes, the adenovirus or polio, and are thus well-protected against pathogenic germs. However, certain viruses, ...

Scientists Reveal a Virus’ Secret Weapon

Jan 18, 2007

It takes more than just breaking and entering for a virus to successfully invade a cell. Getting to the cell’s center—where the host cell’s machinery will be co-opted to make more virus—requires navigating obstacles ...

Retrovirus replication process different than thought

Jul 15, 2010

How a retrovirus, like HIV, reproduces and assembles new viruses is different than previously thought, according to Penn State College of Medicine researchers. Understanding the steps a virus takes for assembly could allow ...

Discovery could lead ways to prevent herpes spread

Sep 14, 2011

(Medical Xpress) -- Herpesviruses are thrifty reproducers -- they only send off their most infectious progeny to invade new cells. Two Cornell virologists recently have discovered how these viruses determine ...

Recommended for you

Lifestyle determines gut microbes

17 hours ago

An international team of researchers has for the first time deciphered the intestinal bacteria of present-day hunter-gatherers.

Rethink education to fuel bioeconomy, says report

18 hours ago

Microbes can be highly efficient, versatile and sophisticated manufacturing tools, and have the potential to form the basis of a vibrant economic sector. In order to take full advantage of the opportunity microbial-based ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...