New way to funnel light could have infrared applications

Oct 25, 2011 by Lisa Zyga feature
The proposed light-funneling structure consists of an alternating pattern of large and small slits engraved on a thin gold film on a substrate. The large slits increase the efficiency of the light funneling through the small slits, while the small slits provide tighter confinement for greater light enhancement. Image credit: G. Subramania, et al. ©2011 American Physical Society

(PhysOrg.com) -- Taking light control to a new level, scientists have proposed a technique for confining light into an area just 1/500th the size of the light's wavelength. Since funneling light through such tiny spaces enhances the optical fields and increases the light's transmission, it could lead to a variety of new optical applications.

The researchers, G. Subramania from Sandia National Laboratories and the University of New Mexico, S. Foteinopoulou from the University of Exeter, UK, and I. Brener from Sandia National Laboratories, have published their study on the new light funneling technique in a recent issue of .

In the efficient power funneling of light, the amount of transmitted light is larger than predicted based on the area of the holes through which the light travels. This phenomenon, which was first demonstrated in 1998, is called extraordinary (EOT) and has been produced by surface plasmons excited on the surface of thin metal films patterned with tiny holes. However, this process is resonant, meaning it only works with light of a very narrow spectrum. Since funneling light of a wide range of wavelengths could be very useful for applications, scientists are interested in alternative techniques for funneling light that are nonresonant, and therefore, broadband.

“The broadband functionality [of a nonresonant device] allows for flexible utilization in many applications, thus considerably relaxing the stringent design requirements of resonant devices,” the authors wrote in their study.

Toward this goal, the scientists proposed a structure consisting of ultra-subwavelength channels that, according to calculations, can efficiently funnel and enhance the intensity of light by a nonresonant mechanism. The device is composed of a periodic pattern of alternating small and large rectangular slits engraved on a thin gold film that rests on a substrate. While the large slits enable a more efficient funneling of light through the small slits, the smaller slits provide tighter confinement for greater light enhancement.

The proposed structure demonstrates a high power confinement factor (PCF), which serves as a figure-of-merit. The PCF is defined as the fraction of incident power that gets funneled through the small-slit region divided by the area of the small-slit region. The higher the PCF, the greater the enhancement of the optical fields.

The scientists calculated that these structures should be able to enhance light with a PCF of 13-20 over a broad range of 3-20 micrometers. The lower part of this range is the mid-infrared, which is particularly useful for applications such as molecular fingerprinting or sensing, as well as infrared detectors. The structures could also have applications in optofluidic devices and the enhancement of nonlinear phenomena.

Since nanofabrication techniques are constantly improving, the scientists predict that it should be possible to fabricate these structures in the near future. While decreasing the width of the small slit could allow for greater enhancement, the researchers note that there exists a lower bound on the width due to the onset of quantum tunneling, as well as fabrication constraints.

Explore further: New insights found in black hole collisions

More information: G. Subramania, et al. “Nonresonant Broadband Funneling of Light via Ultrasubwavelength Channels.” Physical Review Letters, 107, 163902 (2011). DOI:10.1103/PhysRevLett.107.163902

4.8 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

Quantum dots as midinfrared emitters

Feb 23, 2009

(PhysOrg.com) -- “People are interested in the mid-infrared,” Dan Wasserman tells PhysOrg.com. Infrared light has a wavelength longer than visible light, and many molecules have numerous very strong optical resonances in the ...

Scientists advance photonic technology

Mar 23, 2006

Scientists at Denmark's Aalborg University have created a family of devices for guiding and processing light in chip-based information technology.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hyongx
not rated yet Oct 25, 2011
for 10micron wavelength, 1/500th of this is ~20nm. 20nm structures seems possible. let's combine this with quantum-confined semiconducting lasers to get some really crazy stuff.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.