Fast new method for mapping blood vessels may aid cancer research

October 31, 2011
Complex network of blood vessels in the mouse brain imaged by knife-edge scanning microscopy. The image represents an area about 2.9 millimeters across. Credit: Biomedical Optics Express

Like normal tissue, tumors thrive on nutrients carried to them by the blood stream. The rapid growth of new blood vessels is a hallmark of cancer, and studies have shown that preventing blood vessel growth can keep tumors from growing, too. To better understand the relationship between cancer and the vascular system, researchers would like to make detailed maps of the complete network of blood vessels in organs. Unfortunately, the current mapping process is time-consuming: using conventional methods, mapping a one-centimeter block of tissue can take months.

In a paper published in the October issue of the Optical Society's open-access journal Biomedical , computational neuroscientists at Texas A&M University, along with collaborators at the University of Illinois and Kettering University, describe a new system, tested in mouse brain samples, that substantially reduces that time.

The method uses a technique called knife-edge scanning microscopy (KESM). First, blood vessels are filled with ink, and the whole brain sample is embedded in plastic. Next, the plastic block is placed onto an automated vertically moving stage. A diamond knife shaves a very thin slice – one micrometer or less – off the top of the block, imaging the sample line by line at the tip of the knife.

Reconstruction of a small section from the previous image, showing the relative thickness of each blood vessel in the network (color-coded by thickness). The area depicted in the image is about 0.275 millimeters across. Credit: Biomedical Optics Express

Each tiny movement of the stage triggers the camera to take a picture. In this way, the researchers can get the full 3-D structure of the mouse brain's vascular network – from arteries and veins down to the smallest capillaries – in less than two days at full production speed. In the future the team plans to augment the process with fluorescence imaging, which will allow researchers to link brain structure to function.

Explore further: Bioengineers create stable networks of blood vessels

More information: "Fast macro-scale transmission imaging of microvascular networks using KESM," Biomedical Optics Express, Mayerich et al., Vol. 2, Issue 10, pp. 2888-2896 (2011).

Related Stories

Bioengineers create stable networks of blood vessels

February 28, 2006

Yale biomedical engineers have created an implantable system that can form and stabilize a functional network of fine blood vessels critical for supporting tissues in the body, according to a report in the Proceedings of ...

Human vascular system in mice

April 14, 2008

Tumors use the body's blood system for their own purposes: They stimulate the growth of blood vessels that supply the tumor. Medical treatment blocks this process in order to restrain tumors. Scientists of the Joint Research ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.