Researchers fabricate DNA strands on a reusable chip, fold them into novel nanostructures

October 31, 2011

In the emerging field of synthetic biology, engineers use biological building blocks, such as snippets of DNA, to construct novel technologies. One of the key challenges in the field is finding a way to quickly and economically synthesize the desired DNA strands. Now scientists from Duke University have fabricated a reusable DNA chip that may help address this problem by acting as a template from which multiple batches of DNA building blocks can be photocopied. The researchers have used the device to create strands of DNA which they then folded into unique nanoscale structures. They will present their findings at the AVS Symposium, held Oct. 30 – Nov. 4, in Nashville, Tennessee.

Many different methods of DNA synthesis have been developed, but each method has its drawbacks. Bulk DNA synthesis, which makes use of separate columns to house the reactions, can produce large amounts of material, but is costly and limited in the number of different DNA sequences it can create. The Duke researchers, by contrast, used an inkjet printer head to deposit small droplets of chemicals on top of a plastic chip, gradually constructing of mixed length and composition on the surface. The team then used a biological photocopying process to harvest the DNA from the chip. To the researchers' surprise, they found they could reuse the chip to harvest multiple batches of DNA. "We found that we had an "immortal" in our hands," says Ishtiaq Saaem, a biomedical engineering researcher at Duke and member of the team. "Essentially, we were able to do the biological copying process to release material off the chip tens of times. The process seems to work even using a chip that we made, used, stored in -20C for a while, and brought out and used again."

After releasing the DNA from the chip, the team "cooked" it together with a piece of long viral DNA. "In the cooking process, the viral DNA is stapled into a desired shape by the smaller chip-derived DNA," explains Saaem. One of the team's first examples of DNA origami was a rectangle shape with a triangle attached on one side, which the researchers dubbed a "nano-house." The structure could be used to spatially orient organic and inorganic materials, serve as a scaffold for drug delivery, or act as a nanoscale ruler, Saaem says.

Going forward, the team intends to produce larger DNA structures, while also testing the limit of how often their can be reused. In the near-term, the research has applications in the spatial positioning of biomolecules, such as proteins, for research purposes. Long-term, it might even transform information technology: "I would not be surprised if this methodology is used to fabricate the next generation of microprocessors that can push Moore's law even further," Saaem says.

Explore further: Nanoscopic gold spheres can be reversibly bound to DNA strands reversibly bound to DNA strands

More information: The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation BI-MoM10, "DNA Origami from Inkjet Synthesis Produced Strands," is at 11:20 a.m. on Monday, Oct. 31.

Related Stories

DNA constraints control structure of attached macromolecules

June 28, 2005

A new method for manipulating macromolecules has been developed by researchers at the University of Illinois at Urbana-Champaign. The technique uses double-stranded DNA to direct the behavior of other molecules. In previous ...

Stretching DNA to the Limit: DNA damage in a new light

April 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, researchers ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.