Researchers explore plankton's shifting role in deep sea carbon storage

Oct 13, 2011

The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a San Francisco State University research team.

In a study published this week in the journal , SF State Assistant Professor of Biology Jonathon Stillman and colleagues show how climate-driven changes in nitrogen sources and carbon dioxide levels in seawater could work together to make Emiliania huxleyi a less effective agent of in the , the world's largest carbon sink.

Changes to this massive carbon sink could have a critical effect on the planet's future climate, Stillman said, especially as levels continue to rise sharply as a result of fossil fuel burning and other human activities.

While floating free in the sunny top layers of the oceans, the develop elaborate plates of calcified armor called coccoliths. The coccoliths form a hard and heavy shell that eventually sinks to the ocean depths. "About 80 percent of inorganic carbon trapped down there is from coccoliths like these," said Stillman.

Stillman and his colleagues wanted to discover how and changes in the ocean's —both hallmarks of climate warming—might effect coccolith development. So they raised more than 200 generations of Emiliania huxleyi in the lab, adjusting carbon dioxide levels and the type of nitrogen in the phytoplankton's bath.

They found that high levels of carbon dioxide—which make the water more acidic—along with a shift in the prevailing nitrogen type from nitrates to ammonium—"had a synergistic effect" on the phytoplankton's biology and growth.

In particular, coccoliths formed under conditions of high carbon dioxide and high ammonium levels were incomplete or hollow, and contained less than the usual amount of inorganic carbon, the researchers noted.

"The ratio of inorganic to organic carbon is important," Stillman explained. "As increases, it adds more ballast to the hard shell, which makes it sink and makes it more likely to be transported to the deep ocean. Without this, the carbon is more likely to be recycled into the Earth's atmosphere."

"Our results suggest in the future there will be overall lower amounts of calcification and overall lower amount of transport of carbon to the deep ocean," he added.

Emiliania huxleyi typically use nitrates to make proteins, but this form of nitrogen may be in shorter supply for the phytoplankton as the world's oceans grow warmer and more acidic, Stillman and colleagues suggest. In the open ocean, nitrates are upwelled from deep waters, but a thickening layer of warmer surface water could inhibit this upwelling. At the same time, the warmer temperatures favor bacteria that turn recycled nitrogen from surface waters and the atmosphere into ammonium, and acidification inhibits the bacteria that turn ammonium into nitrate.

"It is likely that in the future, the ocean surface will contain more ammonium," which the phytoplankton will assimilate instead of nitrates, Stillman suggested. "Metabolizing nitrogen as ammonium versus nitrates requires different biochemical constituents that impact how well the cells make their coccoliths. They will survive just fine, but their biology will be different as a result."

The study by Stillman and colleagues is the first to look at the intertwined effects of ocean acidification and changes in nitrogen on phytoplankton like Emiliania huxleyi. It's also one of the first studies to observe these effects continuously over a long time scale, "so the responses of the phytoplankton are likely what we'll see in the ocean itself," Stillman said.

Stephane Lefebrve, the SF State postdoctoral student who developed the experiments for the study, said he is now looking for phytoplankton genes that "will help us to build the genetic blueprint of their responses to elevated carbon dioxide and a nitrogen source"

Explore further: Tropical depression 21W forms, Philippines under warnings

More information: "Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: implications of ocean acidification for the carbon cycle," was published online in October by the journal Global Change Biology.

Related Stories

Tiny organisms give big warning about planet health

Dec 08, 2010

San Francisco State University scientists are studying whether a hardworking microscopic organism that helps rid the planet of too much carbon dioxide will continue to work so well in the year 2100, when the ...

Ocean iron and CO2 interaction studied

Apr 26, 2007

A French study suggested that iron supply changes from deep water to the ocean's surface might have a greater effect on atmospheric CO2 than thought.

Shells slim down with CO2

Aug 09, 2011

Marine algae that turn carbon dissolved in seawater into shell will produce thinner and thinner shells as carbon dioxide levels increase.

Recommended for you

Questions of continental crust

9 hours ago

Geological processes shape the planet Earth and are in many ways essential to our planet's habitability for life. One important geological process is plate tectonics – the drifting, colliding and general ...

Better forecasts for sea ice under climate change

Nov 25, 2014

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NANOBRAIN
not rated yet Oct 13, 2011
HUMANKIND BETTER TEAM UP TO SAVE THE PLANET.SOYLENT GREEN MAY COME TRUE.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.