Enzymes act like a switch, turning antibiotic resistance on and off in enterococci

October 31, 2011

Antibiotic-resistant enterococci are a serious problem for patients in the hospital, but little is known about how these bacteria are able to escape antibiotics. New discoveries about the ways in which enterococci turn their resistance to cephalosporin antibiotics on and off are described in a study that will be published November 1 in the online journal mBio. The new details about resistance could lead to new therapies for preventing and treating enterococcal infections.

Enterococcus faecalis isn't always a deadly pathogen. Normally a friendly resident of the , in individuals who are immune compromised E. faecalis can turn ugly. Infecting the , urinary tract, and surgical sites. Patients who are given cephalosporin antibiotics for other problems are also prone to opportunistic E. faecalis infection, since the bacterium is naturally resistant to these antibiotics and flourishes when sensitive are killed off. Cephalosporins are like a last resort for treating infections that are resistant to other, less powerful drugs, so a patient treated with cephalosporins who acquires an E. faecalis infection essentially goes from the frying pan (their original infection) and into the fire (E. faecalis ).

But how do enterococci overcome cephalosporin ? Despite the importance of this pathogen in hospitals, scientists still know relatively little about how enterococci skirt cephalosporin attacks. Chris Kristich and his colleagues at the Medical College of Wisconsin have uncovered new details about the bacterium's ability to turn resistance on and off, a development that could lead to new therapies for enterococcal infections.

According to Kristich, the enzyme IreK is involved in resistance to cephalosporins, since enterococci that lack it are much more sensitive to the drugs. IreK is a kinase – an enzyme that carries phosphate groups. The study coming out in mBio details new findings about another aspect of resistance control: an enzyme called IreP, which takes phosphates off of IreK, thus controlling how active IreK is in the bacterium.

"Phosphorylating IreK changes the activity of the kinase – it's a way to turn it on and off," says Kristich. "The result of that actually is to regulate the level of the output – it is reflected by the level of cephalosporin resistance."

Kristich says the bacterium probably needs a way to turn resistance on and off because maintaining the cellular machinery for resistance costs the cell important resources. "We don't know exactly how [enterococci become resistant to cephalosporins]. Whatever the mechanism, it may be costly when there's no cephalosporin around," says Kristich.

The problem with enterococcal infections is not going to get better until new therapies and preventive strategies can be developed, says Kristich. Knowing more about how the can go back and forth from sensitive to resistant and back can help lead researchers to ways of controlling infections. "There's an opportunity to develop a new strategy by understanding the basis for cephalosporin resistance," says Kristich. "If we could figure out a way to make enterococci susceptible to cephalosporins, they could be used to treat or prevent these infections."

Explore further: Scientists re-engineer antibiotic

Related Stories

Scientists re-engineer antibiotic

February 9, 2006

Scientists have re-engineered an antibiotic that attacks bacteria by inhibiting cell wall synthesis, thereby significantly increasing its effectiveness.

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.