New discovery could make fuel, plastics production more energy efficient and cost effective

October 12, 2011

A University of Minnesota team of researchers has overcome a major hurdle in the quest to design a specialized type of molecular sieve that could make the production of gasoline, plastics and various chemicals more cost effective and energy efficient. The breakthrough research, led by chemical engineering and materials science professor Michael Tsapatsis in the university's College of Science and Engineering, is published in the most recent issue of the journal Science.

After more than a decade of research, the team devised a means for developing free-standing, ultra-thin zeolite nanosheets that as can speed up the process and require less energy. The team has a provisional patent and hopes to commercialize the technology.

"In addition to research on new , chemicals and natural , we also need to look at the production processes of these and other products we use now and try to find ways to save energy," Tsapatsis said.

Separating mixed substances can demand considerable amounts of energy—currently estimated to be approximately 15 percent of the total energy consumption—part of which is wasted due to process inefficiencies. In days of abundant and inexpensive fuel, this was not a major consideration when designing industrial separation processes such as distillation for purifying and polymer precursors. But as energy prices rise and policies promote efficiency, the need for more energy-efficient alternatives has grown.

One promising option for more energy-efficient separations is high-resolution molecular separation with membranes. They are based on preferential adsorption and/or sieving of molecules with minute size and shape differences. Among the candidates for selective separation membranes, zeolite materials (crystals with molecular-sized pores) show particular promise.

While zeolites have been used as adsorbents and catalysts for several decades, there have been substantial challenges in processing zeolitic materials into extended sheets that remain intact. To enable energy-savings technology, scientists needed to develop cost-effective, reliable and scalable deposition methods for thin film zeolite formation.

The University of Minnesota team used sound waves in a specialized centrifuge process to develop "carpets" of flaky crystal-type nanosheets that are not only flat, but have just the right amount of thickness. The resulting product can be used to separate molecules as a sieve or as a membrane barrier in both research and industrial applications.

"We think this discovery holds great promise in commercial applications," said Kumar Varoon, a University of Minnesota engineering and Ph.D. candidate and one of the primary authors of the paper published in Science. "This material has good coverage and is very thin. It could significantly reduce production costs in refineries and save energy."

Explore further: Renewable hydrogen energy - an answer to the energy crisis

More information: To read the full research paper in Science, visit

Related Stories

Renewable hydrogen energy - an answer to the energy crisis

April 19, 2007

Harvesting solar energy to produce renewable, carbon free and cost effective hydrogen as an alternative energy source is the focus of a new £4.2 million research programme at Imperial College London, it is announced.

Membrane breaks through performance barrier

July 30, 2009

( -- Engineers have developed a new method for creating high-performance membranes from crystal sieves called zeolites; the method could increase the energy efficiency of chemical separations up to 50 times over ...

Method makes refineries more efficient

December 22, 2009

( -- Refineries could trim millions of dollars in energy costs annually by using a new method developed at Purdue University to rearrange the distillation sequence needed to separate crude petroleum into products.

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.