For diabetics, spectroscopy may replace painful pinpricks

Oct 25, 2011

Part of managing diabetes involves piercing a finger several times daily to monitor blood sugar levels. Raman spectroscopy could let diabetics monitor glucose without those daily pinpricks. In the past, this would have required a tabletop's worth of equipment. Two former graduate students at MIT's George R. Harrison Spectroscopy Laboratory, Chae-Ryon Kong and Ishan Barman, detail in the AIP's journal AIP Advances how to potentially reduce the overall size of this sensor by making an important part of this equipment smaller.

Their Raman spectrograph works by shining a low-powered laser though the thin fold of skin between the thumb and forefinger. As the laser's photons move through the skin, they strike the vibrating molecules around them. A portion of these photons interact with the vibrating molecules in ways that change their . This is called Raman scattering.

Each type of molecule produces a unique set of energy levels that show up as a spectrum and identify the molecule. Unfortunately, less than one out of one million photons undergoes Raman scattering. So it is important to capture as many scattered photons as possible, then filter out everything but the Raman photons. Optical filters can do this, but they are only effective when the hit them within a narrow range of angles. Previous researchers have used a compound parabolic concentrator (CPC) for this purpose, yet it takes a very large CPC to achieve the high degree of collimation needed.

Kong and Barman turned to a more compact mirror, a compound hyperbolic concentrator (CHC), which uses a lens to focus light into the necessary tight beam. "The new design is from five to 20 times smaller than if we used a CPC to achieve the same performance," Kong said. This development is the first step toward making portable possible. According to Ramachandra Dasari, the lab's associate director, such portable Raman spectrographs could also be used to identify other blood of disease, and to determine if biopsies contain cancerous tissue. The corresponding tests would take about one minute. The current prototype is the size of a shopping cart. "Our next step is to miniaturize this and make it portable," he said. Dasari expects to build a portable prototype over the next couple of years.

Explore further: How the hummingbird achieves its aerobatic feats

More information: "A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement" by Chae-Ryon Kong et al., is published in AIP Advances.

Provided by American Institute of Physics

4.7 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

New device for patients to monitor blood glucose levels

Aug 09, 2010

People with type 1 diabetes must keep a careful eye on their blood glucose levels: Too much sugar can damage organs, while too little deprives the body of necessary fuel. Most patients must prick their fingers ...

Mass weddings -- NIST's new efficient 2-photon source

Apr 12, 2007

For a variety of applications in physics and technology, ranging from quantum information theory to telecommunications, it’s handy to have access to pairs of photons created simultaneously, with a chosen ...

Shedding new light on cancer

Jan 22, 2010

(PhysOrg.com) -- Researchers at the University of St Andrews have developed a powerful technique that could allow earlier cancer detection.

Recommended for you

How the hummingbird achieves its aerobatic feats

18 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.