Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

Oct 11, 2011

Diamond, nature's hardest known substance, is essential for our modern mechanical world – drills, cutters, and grinding wheels exploit the durability of diamonds to power a variety of industries. But diamonds have properties that may also make them excellent materials to enable the next generation of solid-state quantum computers and electrical and magnetic sensors.

To further explore diamonds' potential, researchers from the University of Science and Technology of China tested the properties of a common defect found in diamond: the nitrogen-vacancy (NV) center.

Consisting of a nitrogen atom impurity paired with a 'hole' where a carbon atom is absent from the matrix structure, the NV center has the potential to store information because of the predictable way in which electrons confined in the center interact with electromagnetic waves.

The research team probed the energy level properties of the trapped electrons by cooling the diamonds to an extremely chilly 5.6 degrees Kelvin and then measuring the magnetic resonance and fluorescent emission spectra. The team also measured the same spectra at gradually warmer increments, up to 295 degrees Kelvin.

The results, as reported in the AIP's journal Applied Physics Letters, show that at temperatures below 100 Kelvin the electrons' transition energies, or the energies required to get from one energy level to the next, were stable. Shifting transition energies could make quantum mechanical manipulations tricky, so cooler temperatures may aid the study and development of for quantum computation and ultra-sensitive detectors, the authors write.

Explore further: X-ray laser probes tiny quantum tornadoes in superfluid droplets

More information: "Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond" is accepted for publication in Applied Physics Letters.

Provided by American Institute of Physics

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Diamonds and the holy grail of quantum computing

Jun 29, 2010

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time ...

The diamond’s quantum memory

Aug 10, 2011

For years, quantum computers have been the holy grail of quantum technology. When a normal computer has to solve a number of problems, it can only execute them one after the other. In contrast, a quantum computer ...

Scientists look beyond diamond for quantum computing

Apr 30, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects ...

Physicists set guidelines for qubit candidates

May 04, 2010

(PhysOrg.com) -- To build a quantum computer, it's essential to be able to quickly and efficiently manipulate the quantum states of qubits. The qubits, which are the basic unit of quantum information, can be composed of many ...

Recommended for you

Water window imaging opportunity

16 hours ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0