Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

October 11, 2011

Diamond, nature's hardest known substance, is essential for our modern mechanical world – drills, cutters, and grinding wheels exploit the durability of diamonds to power a variety of industries. But diamonds have properties that may also make them excellent materials to enable the next generation of solid-state quantum computers and electrical and magnetic sensors.

To further explore diamonds' potential, researchers from the University of Science and Technology of China tested the properties of a common defect found in diamond: the nitrogen-vacancy (NV) center.

Consisting of a nitrogen atom impurity paired with a 'hole' where a carbon atom is absent from the matrix structure, the NV center has the potential to store information because of the predictable way in which electrons confined in the center interact with electromagnetic waves.

The research team probed the energy level properties of the trapped electrons by cooling the diamonds to an extremely chilly 5.6 degrees Kelvin and then measuring the magnetic resonance and fluorescent emission spectra. The team also measured the same spectra at gradually warmer increments, up to 295 degrees Kelvin.

The results, as reported in the AIP's journal Applied Physics Letters, show that at temperatures below 100 Kelvin the electrons' transition energies, or the energies required to get from one energy level to the next, were stable. Shifting transition energies could make quantum mechanical manipulations tricky, so cooler temperatures may aid the study and development of for quantum computation and ultra-sensitive detectors, the authors write.

Explore further: Scientists look beyond diamond for quantum computing

More information: "Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond" is accepted for publication in Applied Physics Letters.

Related Stories

Scientists look beyond diamond for quantum computing

April 30, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects ...

Physicists set guidelines for qubit candidates

May 4, 2010

(PhysOrg.com) -- To build a quantum computer, it's essential to be able to quickly and efficiently manipulate the quantum states of qubits. The qubits, which are the basic unit of quantum information, can be composed of many ...

Diamonds and the holy grail of quantum computing

June 29, 2010

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time ...

The diamond’s quantum memory

August 10, 2011

For years, quantum computers have been the holy grail of quantum technology. When a normal computer has to solve a number of problems, it can only execute them one after the other. In contrast, a quantum computer could occupy ...

Recommended for you

First movies of droplets getting blown up by x-ray laser

May 24, 2016

Researchers have made the first microscopic movies of liquids getting vaporized by the world's brightest X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. The new data could lead to better and ...

Speedy terahertz-based system could detect explosives

May 23, 2016

Terahertz spectroscopy, which uses the band of electromagnetic radiation between microwaves and infrared light, is a promising security technology because it can extract the spectroscopic "fingerprints" of a wide range of ...

Researchers design six-state magnetic memory

May 18, 2016

(Phys.org)—Computers are often described with "ones and zeros," referring to their binary nature: each memory element stores data in two states. But there is no fundamental reason why there should be just two. In a new ...

Ultrasensitive magnetometer proposed based on compass needle

May 18, 2016

(Phys.org)—A team of researchers with members from several institutions in the U.S. and one in Germany has proposed the idea of using an extremely small compass needle to build an ultrasensitive magnetometer. In their paper ...

Computing a secret, unbreakable key

May 20, 2016

What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.