Israeli wins chemistry Nobel for quasicrystals (Update 3)

Oct 05, 2011 By KARL RITTER and MALIN RISING , Associated Press
A screen grab of Israeli Daniel Shechtman from the Haifa Institute of Technology, winner of the 2011 Nobel Chemistry prize for the discovery of quasicrystals.

Israeli scientist Dan Shechtman was awarded the Nobel Prize in chemistry on Wednesday for a discovery that faced skepticism and mockery, even prompting his expulsion from his U.S. research team, before it won widespread acceptance as a fundamental breakthrough.

When Israeli scientist Dan Shechtman claimed to have stumbled upon a new crystalline chemical structure that seemed to violate the laws of nature, colleagues mocked him, insulted him and exiled him from his research group.

After years in the scientific wilderness, though, he was proved right. And on Wednesday, he received the ultimate vindication: the Nobel Prize in chemistry.

The lesson?

"A good scientist is a humble and listening scientist and not one that is sure 100 percent in what he read in the textbooks," Shechtman said.

The shy, 70-year-old Shechtman said he never doubted his findings and considered himself merely the latest in a long line of scientists who advanced their fields by challenging the conventional wisdom and were shunned by the establishment because of it.

In 1982, Shechtman discovered what are now called "quasicrystals" - atoms arranged in patterns that seemed forbidden by nature.

"I was thrown out of my research group. They said I brought shame on them with what I was saying," he recalled. "I never took it personally. I knew I was right and they were wrong."

The discovery "fundamentally altered how chemists conceive of solid matter," the Royal Swedish Academy of Sciences said in awarding the $1.5 million prize.

Since his discovery, quasicrystals have been produced in laboratories, and a Swedish company found them in one of the most durable kinds of steel, which is now used in products such as razor blades and thin needles made specifically for eye surgery, the academy said. Quasicrystals are also being studied for use in new materials that convert heat to electricity.

Shechtman is a professor at the Technion-Israel Institute of Technology in Haifa, Israel. He is the 10th Israeli Nobel winner, a great source of pride in a nation of just 7.8 million people. Shechtman fielded congratulatory calls from Israeli President Shimon Peres, who shared the Nobel Peace Prize in 1994, and Prime Minister Benjamin Netanyahu.

"Every citizen of Israel is happy today and every Jew in the world is proud," Netanyahu said.

Staffan Normark, permanent secretary of the Royal Swedish Academy, said Shechtman's discovery was one of the few Nobel Prize-winning achievements that can be dated to a single day.

On April 8, 1982, while on sabbatical at the National Bureau of Standards in Washington - now called the National Institute of Standards and Technology - Shechtman first observed crystals with a shape most scientists considered impossible.

The discovery had to do with the idea that a crystal shape can be rotated a certain amount and still look the same. A square contains four-fold symmetry, for example: If you turn it by 90 degrees, a quarter-turn, it still looks the same. For crystals, only certain degrees of such symmetry were thought possible. Shechtman had found a crystal that could be rotated one-fifth of a full turn and still look the same.

"I told everyone who was ready to listen that I had material with pentagonal symmetry. People just laughed at me," he said in an account released by his university.

He was asked to leave his research group, and moved to another one within the National Bureau of Standards, Shechtman said. He eventually returned to Israel, where he found one colleague prepared to work with him on an article describing the phenomenon. The article was at first rejected but was finally published in November 1984 to an uproar in the scientific world.

In 1987, friends in France and Japan succeeded in growing crystals large enough for X-rays to verify what he had discovered with the electron microscope.

"The moment I presented that, the community said, `OK, Danny, now you are talking. Now we understand you. Now we accept what you have found,'" Shechtman told reporters.

Shechtman, who also teaches at Iowa State University in Ames, Iowa, said he never wavered even in the face of stiff criticism from double Nobel winner Linus Pauling, who never accepted Shechtman's findings.

"He would stand on those platforms and declare, 'Danny Shechtman is talking nonsense. There is no such thing as quasicrystals, only quasi-scientists.'" Shechtman said. "He really was a great scientist, but he was wrong. It's not the first time he was wrong."

Shechtman's battle "eventually forced scientists to reconsider their conception of the very nature of matter," the academy said.

Nancy B. Jackson, president of the American Chemical Society, called Shechtman's breakthrough "one of these great scientific discoveries that go against the rules." Only later did some scientists go back to some of their own inexplicable findings and realize they had seen quasicrystals without understanding what were looking at, Jackson said.

"Anytime you have a discovery that changes the conventional wisdom that's 200 years old, that's something that's really remarkable," said Princeton University physicist Paul J. Steinhardt, who coined the term "quasicrystals" and had been doing theoretical work on them before Shechtman reported finding the real thing.

Steinhardt recalled the day a fellow scientist showed him Shechtman's paper in 1984: "I sort of leapt in the air."

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

More information: www.nobelprize.org/nobel_prizes/chemistry/laureates/2011/

For advanced information: www.nobelprize.org/nobel_prizes/chemistry/laureates/2011/sciback_2011.pdf

A remarkable mosaic of atoms

In quasicrystals, we find the fascinating mosaics of the Arabic world reproduced at the level of atoms: regular patterns that never repeat themselves. However, the configuration found in quasicrystals was considered impossible, and Daniel Shechtman had to fight a fierce battle against established science. The Nobel Prize in Chemistry 2011 has fundamentally altered how chemists conceive of solid matter.

On the morning of 8 April 1982, an image counter to the laws of nature appeared in Daniel Shechtman's electron microscope. In all solid matter, atoms were believed to be packed inside crystals in symmetrical patterns that were repeated periodically over and over again. For scientists, this repetition was required in order to obtain a crystal.

Shechtman's image, however, showed that the atoms in his crystal were packed in a pattern that could not be repeated. Such a pattern was considered just as impossible as creating a football using only six-cornered polygons, when a sphere needs both five- and six-cornered polygons. His discovery was extremely controversial. In the course of defending his findings, he was asked to leave his research group. However, his battle eventually forced scientists to reconsider their conception of the very nature of matter.

Aperiodic mosaics, such as those found in the medieval Islamic mosaics of the Alhambra Palace in Spain and the Darb-i Imam Shrine in Iran, have helped scientists understand what quasicrystals look like at the atomic level. In those mosaics, as in quasicrystals, the patterns are regular - they follow mathematical rules - but they never repeat themselves.

When scientists describe Shechtman's quasicrystals, they use a concept that comes from mathematics and art: the golden ratio. This number had already caught the interest of mathematicians in Ancient Greece, as it often appeared in geometry. In quasicrystals, for instance, the ratio of various distances between atoms is related to the golden mean.

Following Shechtman's discovery, scientists have produced other kinds of quasicrystals in the lab and discovered naturally occurring quasicrystals in mineral samples from a Russian river. A Swedish company has also found quasicrystals in a certain form of steel, where the crystals reinforce the material like armor. Scientists are currently experimenting with using quasicrystals in different products such as frying pans and diesel engines.

5 /5 (4 votes)

Related Stories

Laser pioneer or electrochemist for Nobel?

Oct 05, 2011

(AP) -- Americans William Moerner, Allen Bard and Richard Zare could be among the potential candidates when the Nobel Prize in chemistry is announced Wednesday.

Quantum physics is the focus of Nobel buzz

Oct 04, 2011

Three physicists whose research on entangled particles plays a key role in attempts to develop super-fast quantum computers could be in the running for the 2011 Nobel Prize in physics on Tuesday.

Nobel jury caught off guard by death of laureate

Oct 03, 2011

The Nobel Medicine Prize jury was caught off guard Monday when it honoured a Canadian scientist who unbeknownst to them died just days before the announcement, with prize rules forbidding posthumous awards. ...

California physicist shares 2011 Nobel Prize

Oct 04, 2011

Saul Perlmutter won the Nobel Prize in physics Tuesday, but it wasn't until the California scientist was awakened by a telephone call from a reporter in Sweden that he learned of the distinction. ...

Canada's PM lauds Nobel laureate Steinman

Oct 03, 2011

Canada's prime minister paid tribute Monday to Canadian cell biologist Ralph Steinman, who died days before being awarded the Nobel Prize for Medicine for his pioneering work on the immune system.

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

epsi00
3.7 / 5 (3) Oct 05, 2011
Taking risks can pay off. He deserves a double, correct that, a triple Nobel. And Pauling should have known better.
zweistein_2
3.7 / 5 (3) Oct 05, 2011
Remember all that was to be discovered has been discovered and there is nothing new to be found.
Isaacsname
not rated yet Oct 05, 2011
Congrats to Dan Shechtman for his "phi"nding. This should be a valuable lesson to us all.
jimbo92107
not rated yet Oct 05, 2011
Sometimes it takes great courage to believe what you see with your own eyes.
Baseline
5 / 5 (3) Oct 05, 2011
If physorg and the internet would have been around back in the 80's we could have been blessed with someone, who shall go unamed, calling him Schechtmantard and telling us all how wrong his findings were.
thula
not rated yet Oct 06, 2011
Congrats Dan you are an inspiration to me
rawa1
not rated yet Oct 06, 2011
It's worth noting that when he made his discovery, it was so outside the scientific consensus as to what was possible in chemistry that his research group kicked him out.

He spent years establishing that he was right and the consensus was wrong.

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.