Cells are crawling all over our bodies, but how?

Oct 18, 2011
This is an electron microscope image of two crawling worm sperm magnified ~5,000X. Credit: Courtesy, Tom Roberts, FSU Dept. of Biological Science

(PhysOrg.com) -- For better and for worse, human health depends on a cell's motility -- the ability to crawl from place to place. In every human body, millions of cells –are crawling around doing mostly good deeds -- though if any of those crawlers are cancerous, watch out.

"This is not some horrible sci-fi movie come true but, instead, normal carrying out their daily duties," said Florida State University cell biologist Tom Roberts. For 35 years he has studied the mechanical and molecular means by which amorphous single cells purposefully propel themselves throughout the body in amoeboid-like fashion ––absent muscles, bones or brains.

Meanwhile, human cells don't give up their secrets easily. In the body, they use the millions of tiny filaments found on their front ends to push the front of their cytoskeletons forward. In rapid succession the cells then retract their rears in a smooth, coordinated extension-contraction manner that puts inchworms to shame. Yet take them out of the body and put them under a microscope and the crawling changes or stops.

But now Roberts and his research team have found a novel way around uncooperative human cells.

In a landmark study led by Roberts and conducted in large part by his then-FSU postdoctoral associate Katsuya Shimabukuro, researchers used worm sperm to replicate cell motility in vitro –– in this case, on a microscope slide.

Doing what no other scientists had ever successfully done before, Shimabukuro disassembled and reconstituted a worm sperm cell, then devised conditions to promote thecell's natural pull-push crawling motions even in the unnatural conditions of a laboratory. Once launched, the reconstituted machinery moved just like regular worm sperm do in a natural setting –– giving scientists an unprecedented opportunity to watch it move.

Roberts called his former postdoc's signal achievement "careful, clever work" –– and work it did, making possible new, revealing images of cell motility that should help to pinpoint with never-before-seen precision just how cells crawl.

"Understanding how cells crawl is a big deal," Roberts said. "The first line of defense against invading microorganisms, the remodeling of bones, healing wounds in the skin and reconnecting of neuronal circuits during regeneration of the nervous system –– all depend on the capacity of specialized cells to crawl.

"On the downside, the ability of tumor cells to crawl around is a contributing factor in the metastasis of malignancies," he said. "But we believe our achievements in this latest round of basic research could eventually aid in the development of therapies that target in order to interfere with or block the metastasis of cancer."

Funding for Robert's worm-sperm study came from the National Institutes of Health. The findings are described in a paper ("Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction") published online in the journal Current Biology.

Why worm sperm?

For one thing, said Roberts, the worm sperm is different from most cells in that itdoesn't use molecular motor proteins to facilitate its contractions; it shimmies along strictly by putting together and tearing down its tiny filaments. And the simple worm sperm makes a good model because, while it is similar to a human cell it has fewer moving parts, making it less complicated to take apart and reassemble than, say, brain or cancer cells.

Armed with the newfound ability to reconstitute amoeboid motility in vitro, cell biologists such as Roberts may be able to learn the answers to some major moving questions. Among them: How can some cells continue to crawl even after researchers have disabled their supply of myosin, the force-producing "mover protein" that functions like a motor to help power muscle and cell contraction?

For Roberts and his team, the next move will be to determine if what they've learned about worm sperm also applies to more conventional crawling cells, including tumor cells.

"As always, there will be more questions," Roberts said. "Are there multiple mechanisms collaborating to drive cell body retraction? Is there redundancy built into the motility systems?"

Explore further: Scientists find key to te first cell differentiation in mammals

Related Stories

Making sperm from stem cells in a dish

Aug 04, 2011

Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. A Kyo ...

From a single adult cell, flatworm crafts a new body

May 12, 2011

A single adult cell from one of the most impressive masters of regeneration in the animal kingdom – the planarian – is all it takes to build a completely functional new worm, researchers have learned. The study ...

Stem cells know where they want to go

Jul 07, 2011

Human stem cells have the ability to become any cell type in the human body, but when it comes to their destination they know where they want to go.

Japanese sperm cell breakthrough offers hope to infertile men

Mar 24, 2011

(PhysOrg.com) -- In what can only be described as cosmic forces at work, Japanese scientists working at Yokohama University, just south of Tokyo, have in the midst of a national crises, announced a major breakthrough in fertility ...

Recommended for you

Research helps identify memory molecules

15 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

16 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

16 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Oct 18, 2011
Great research, and I love the premise of the article.

I believe that the worm sperm is a great analogue to study in place of human cells.

I think we still need to keep pushing to be able to properly study the other types of cells as well do to the great difference in the type/purpose of these cells. There still may be unexpected differences despite the fact they use the same type of locomotion in this case.
kaasinees
1.8 / 5 (5) Oct 18, 2011
i better hope i dont have worm sperm on me. i dont see the link.
that_guy
5 / 5 (3) Oct 18, 2011
The link is that these specific spermies don't use normal sperm locomotion (Flagella), this sperm uses the same amoeba like movement that our cells do when moving inside the body.

The difference is that our cells don't like to keep moving when they're outside the body (Which makes them hard to study in detail.), whereas, these sperm cells will keep moving, and can be studied on a microscope slide or petri dish while they move.
kaasinees
1 / 5 (1) Oct 18, 2011
thank you for the explanation.
irjsiq
1 / 5 (1) Oct 19, 2011
Chiste!
They Seek 'Lower Taxes!