Researchers block morphine's itchy side effect

Oct 13, 2011
Opioid drugs such as morphine interact with receptors on nerve cells. The drug relieves pain by interacting with one form of the receptor (MOR1) and causes itching when it interacts with a different form of the receptor (MOR1D). Credit: Chen lab-Washington University School of Medicine in St. Louis

Itching is one of the most prevalent side effects of powerful, pain-killing drugs like morphine, oxycodone and other opioids. The opiate-associated itch is so common that even women who get epidurals for labor pain often complain of itching. For many years, scientists have scratched their own heads about why drugs that so effectively suppress pain also induce itch.

Now in mice, researchers at Washington University School of Medicine in St. Louis have shown they can control opioid-induced itching without interfering with a drug's ability to relieve pain. The discovery raises tantalizing possibilities for new treatments to eliminate itch in cancer and as well as others who rely on opioids to relieve chronic and .

The investigators report the findings Oct. 14 in the journal Cell.

By identifying and blocking a specific variant of the opioid receptor in the spinal cord, Zhou-Feng Chen, PhD, director of Washington University's Center for the Study of Itch, a newly established multidisciplinary center aimed at translating basic itch research into novel treatments, and his colleagues have demonstrated for the first time that it is possible to inhibit itch without dulling morphine's pain-killing effects.

This video is not supported by your browser at this time.
One of the most prevalent side effects of pain-killing drugs is itching. Now Washington University itch researchers report that they’ve been able to control the itching related to morphine in mice without interfering with the drug’s ability to relieve pain. The discovery raises new possibilities about treatments that might eliminate itch in patients who have to rely on opioid drugs to relieve pain. Credit: Washington University BioMed Radio

"We've known for decades that there are a number of variants of the opioid receptor, but unfortunately, their physiological importance has been largely overlooked," says Chen, principal investigator on the study. "We identified a particular variant of the receptor called MOR1D that mediates itch. When we blocked MOR1D, mice that got no longer needed to scratch, and they still received the same level of ."

In previous studies, Chen, a professor of , of psychiatry and of , had identified an itch-specific receptor in the spinal cord called GRPR (gastrin-releasing ). His studies also have shown that neurons containing GRPR specifically transmit itch but do not carry pain information. In the new study, his team found that the opioid receptor MOR1D induced itching in the mice on morphine by activating GRPR.

"It is exciting to know that MORID actually functions as an itch-specific receptor," Chen says. "Depending on different types of itch-producing substances, our study suggests that the body has different ways of activating GRPR to transmit itch. In this case, opioids such as morphine first activate MOR1D, and that receptor subsequently connects to GRPR to relay itch signals."

In a surprising twist, first author Xian-Yu Liu, PhD, a postdoctoral researcher in Chen's lab, found that a major variant of the opioid receptor called MOR1 exclusively mediates morphine's analgesic effects in the spinal cord. When he blocked MOR1D, the no longer scratched. When he blocked MOR1, the animals no longer received the drug's pain-killing benefits, but they continued to scratch.

"Scientists have blamed the wrong receptor, but now the culprit has been caught," Chen says. "There are more than a dozen forms of the opioid receptor on nerve cells, but MOR1D is the first one that has nothing to do with killing pain. It only transmits itch."

Other of opioids also have been extremely difficult to separate from the drugs' analgesic effects. But the current study makes Chen suspect that other variants of the receptor may be related to nausea, respiratory depression, constipation or other common side effects associated with the use of pain-killing drugs.

Chen hopes his research will motivate other investigators to look more closely at whether other variants may be responsible for these additional side effects.

"They may do all sorts of different things under the same 'disguise,'" Chen says. "If so, the implications could be clinically significant."

Chen says at first glance, MOR1 and MOR1D appear almost identical, the "bad guy" dressed in the "good guy's" clothing. The only difference is that MOR1 does not have seven amino acids found in MOR1D. But he says those seven amino acids turn out to be critical for the interaction between MOR1D and GRPR in the .

"They operate like a key that can be used to open a door," he says. "Without the key, MOR1 can't activate GRPR even though the receptor is activated by morphine."

He says the finding opens up new possibilities for designing novel therapeutic strategies to relieve opioid-induced itching without blocking the analgesic effects of the drugs.

"If you can somewhow alter the key, you may eliminate itching without actually destroying MOR1D and GRPR," Chen says. "We wouldn't want to knock out those receptors in people because it's possible that they may have other important functions not related to itching."

Chen's team plans to look more closely at other opioid receptors to learn what they do, but he also hopes to quickly determine whether blocking MOR1D might alleviate itch people taking morphine or other opioids.

"There is a similar MOR1D receptor in humans, so we hope to find out whether blocking the same receptor in patients could alleviate itching without interfering with the analgesic effects of pain-killing drugs," he says.

Explore further: An up-close look at what air pollution is doing to your body

More information: Liu XY, Liu ZC, Sun YG, Ross M, Kim S, Tsai FF, Li QF, Jeffry J, Kim JY, Loh HH, Chen ZF, Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell, vol. 147. Oct. 14, 2011. DOI: 10.1016/j.cell.2011.08.043

Related Stories

Pain and itch connected down deep

May 02, 2011

A new study of itch adds to growing evidence that the chemical signals that make us want to scratch are the same signals that make us wince in pain.

Burning pain and itching governed by same nerve cells

Nov 04, 2010

We all know how hard it is not to scratch when we have an itch. But how can an itch be alleviated? In a new study published today in the prestigious journal Neuron, researchers at Uppsala University present the surprising findin ...

Relief from itch seen in nerves; may aid treatment

Apr 06, 2009

(AP) -- Scratch an itch and you get ... aaaaaah. Now scientists have watched spinal nerves transmit that relief signal to the brain in monkeys, a possible step toward finding new treatments for persistent itching in people.

Recommended for you

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

ACW
not rated yet Oct 13, 2011
How was it determined that the pain relief levels were unchanged in the mice?
Parsec
not rated yet Oct 13, 2011
They focus heat on their tails. If they flick them away, then they detected that it hurt.
NeptuneAD
not rated yet Oct 13, 2011
Ouch, I can imagine feeling that and i'm on opioid based pain killers, pretty mean of them to be doing that to mice, all in the name of research I guess and it sure would be nice to rid of the itching.