How biological capsules respond under stress

Oct 28, 2011

Cosmetics and pharmaceutical drug delivery systems could be improved thanks to a new method developed to precisely measure the capability of capsule-like biological membranes to change shape under external stress. This work is outlined in a study about to be published in European Physical Journal E by Philippe Meleard and Tanja Pott from the Rennes-based Institute of Chemical Sciences at the European University of Brittany and their colleagues from the Center for Biomembrane Physics at the University of Southern Denmark in Odense.

The authors found that, by using a statistical method, they could evaluate the bending elasticity of biological models, a key factor in understanding their physical properties. They relied on a series of video-microscopy images of giant liposomes, which are artificial spherical vesicles of more than ten micrometers in diameter made of a bi-layer of fatty substance called lipids. They studied the membrane deformations triggered by thermal agitation of molecules in the liquid surrounding them, over time.

Previous approaches used the average of deformation amplitudes observed in these images, which meant a loss of accuracy of up to 20 percent. Instead, in this study, the authors focused on evaluating the statistical distribution of the membrane deformation, which yielded unprecedented precision. This method relies on the so-called Maxwell-Boltzman statistical distribution, named after James Clerck Maxwell and Ludwig Boltzmann, who studied the kinetic theory of gas using this approach.

The method presented in this paper could be of interest to industry scientists in devising both cosmetic and pharmaceutical applications. For example, industry often needs to encapsulate products such as cytotoxic or in prior to delivering them into patients' bodies. Ultimately, it could help industry scientists determine what type of biological membrane is best suited for their specific purpose.

Explore further: Using antineutrinos to monitor nuclear reactors

More information: Méléard P et al. (2011) Advantages of statistical analysis of giant vesicle flickering for bending elasticity measurements. European Physical Journal E. 34: 116 (DOI 10.1140/epje/i2011-11116-6)

add to favorites email to friend print save as pdf

Related Stories

Together, biological membranes prevail

Jan 26, 2007

Researchers at the University of Illinois at Urbana-Champaign have developed a novel method to visualize the fusion of biological membranes at the single-event resolution. Observing the individual fusion events revealed an ...

Major step for drug discovery and diagnostics

Feb 12, 2009

Researchers from Nano-Science Center, University of Copenhagen and National Centre for Scientific Research, France have developed a general method to study membrane proteins. This method can be used to screen ...

Live recordings of cell communication

Aug 06, 2009

Neurons communicate with each other with the help of nano-sized vesicles. Disruption of this communication process is responsible for many diseases and mental disorders like e.g. depression. Nerve signals travel from one ...

Biologists search for 'half-fusion'

May 16, 2005

Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of ...

Scientists devise method to study membrane proteins

Apr 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

5 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

9 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

23 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...