How biological capsules respond under stress

Oct 28, 2011

Cosmetics and pharmaceutical drug delivery systems could be improved thanks to a new method developed to precisely measure the capability of capsule-like biological membranes to change shape under external stress. This work is outlined in a study about to be published in European Physical Journal E by Philippe Meleard and Tanja Pott from the Rennes-based Institute of Chemical Sciences at the European University of Brittany and their colleagues from the Center for Biomembrane Physics at the University of Southern Denmark in Odense.

The authors found that, by using a statistical method, they could evaluate the bending elasticity of biological models, a key factor in understanding their physical properties. They relied on a series of video-microscopy images of giant liposomes, which are artificial spherical vesicles of more than ten micrometers in diameter made of a bi-layer of fatty substance called lipids. They studied the membrane deformations triggered by thermal agitation of molecules in the liquid surrounding them, over time.

Previous approaches used the average of deformation amplitudes observed in these images, which meant a loss of accuracy of up to 20 percent. Instead, in this study, the authors focused on evaluating the statistical distribution of the membrane deformation, which yielded unprecedented precision. This method relies on the so-called Maxwell-Boltzman statistical distribution, named after James Clerck Maxwell and Ludwig Boltzmann, who studied the kinetic theory of gas using this approach.

The method presented in this paper could be of interest to industry scientists in devising both cosmetic and pharmaceutical applications. For example, industry often needs to encapsulate products such as cytotoxic or in prior to delivering them into patients' bodies. Ultimately, it could help industry scientists determine what type of biological membrane is best suited for their specific purpose.

Explore further: UK's Neutron and Muon Facility back in action after six months of upgrades

More information: Méléard P et al. (2011) Advantages of statistical analysis of giant vesicle flickering for bending elasticity measurements. European Physical Journal E. 34: 116 (DOI 10.1140/epje/i2011-11116-6)

Related Stories

Together, biological membranes prevail

Jan 26, 2007

Researchers at the University of Illinois at Urbana-Champaign have developed a novel method to visualize the fusion of biological membranes at the single-event resolution. Observing the individual fusion events revealed an ...

Major step for drug discovery and diagnostics

Feb 12, 2009

Researchers from Nano-Science Center, University of Copenhagen and National Centre for Scientific Research, France have developed a general method to study membrane proteins. This method can be used to screen ...

Live recordings of cell communication

Aug 06, 2009

Neurons communicate with each other with the help of nano-sized vesicles. Disruption of this communication process is responsible for many diseases and mental disorders like e.g. depression. Nerve signals travel from one ...

Biologists search for 'half-fusion'

May 16, 2005

Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of ...

Scientists devise method to study membrane proteins

Apr 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.