Bacterial communication could affect Earth's climate

Oct 12, 2011
Tiny marine plants (phytoplankton) die or are eaten by tiny marine animals (zooplankton) which defecate into the water. All this detritus is sticky and agglomerates into heavier particles that sink. This epifluorescence micrograph of a stained gelatinous particle (about 200 microns in size) was harvested from a particle trap set 60 meters deep in Clayoquot Sound, British Columbia, Canada, in 2009. Note individual microbial cells (about 0.5 to 2 microns in length) embedded in gelatinous material together with other plankton “hard parts.” (Photo by Tracy Mincer, Woods Hole Oceanographic Institution)

(PhysOrg.com) -- Woods Hole Oceanographic Institution (WHOI) scientists have discovered that bacterial communication could have a significant impact on the planet's climate.

In the ocean, bacteria coalesce on of carbon-rich detritus sinking through the depths. WHOI marine biogeochemists Laura Hmelo, Benjamin Van Mooy, and Tracy Mincer found that these bacteria send out to discern if other bacteria are in the neighborhood. If enough of their cohorts are nearby, then bacteria en masse commence secreting enzymes that break up the carbon-containing molecules within the particles into more digestible bits. It has been suggested that coordinated expression of enzymes is very advantageous for bacteria on sinking particles, and Hmelo and her colleagues have uncovered the first proof of this in the ocean.

"We don't often think about bacteria making group decisions, but that is exactly what our data suggest is happening," said Hmelo, now at the University of Washington.

The paper is published in the current online, "early view," issue of Environmental Microbiology Reports.

The source of carbon in the particles is , a heat-trapping . Bacterial communication could lead to the release of carbon from the particles at shallower depths, rather than sinking to the ocean's depths. According to the WHOI scientists, this means that bacterial communication results in less carbon dioxide being drawn out of the air and transferred to the bottom of the ocean from where it cannot easily return to the atmosphere. This represents the first evidence that bacterial communication plays a crucial role in Earth's .

"So buffer the amount of carbon dioxide in the atmosphere through their 'conversations,' " Van Mooy said. "I think it's amazing that there are a near- infinite number of these conversations going on in the ocean right now, and they are affecting Earth's carbon cycle."

Explore further: NASA sees Tropical Storm Kalmaegi weakening over Vietnam

Provided by Woods Hole Oceanographic Institution

5 /5 (7 votes)

Related Stories

Food source threatened by carbon dioxide

Dec 10, 2007

Carbon dioxide increasing in the atmosphere may affect the microbial life in the sea, which could have an impact on a major food source, warned Dr Ian Joint at a Science Media Centre press briefing today.

Recommended for you

NASA sees Odile soaking Mexico and southwestern US

3 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

3 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

astro_optics
not rated yet Oct 12, 2011
The bigger problem is if too much Carbon sinks to the ocean floor then it will acidify, hence you have an even larger problem!