Astrophysics and extinctions: News about planet-threatening events

Oct 07, 2011

Space is a violent place. If a star explodes or black holes collide anywhere in our part of the Milky Way, they'd give off colossal blasts of lethal gamma-rays, X-rays and cosmic rays and it's perfectly reasonable to expect Earth to be bathed in them. A new study of such events has yielded some new information about the potential effects of what are called "short-hard" interstellar radiation events.

Several studies in the past have demonstrated how longer high-energy radiation bursts, such as those caused by supernovae, and extreme can deplete , allowing the most powerful and damaging forms of to penetrate to the Earth's surface. The probability of an event intense enough to disrupt life on the land or in the oceans becomes large, if considered on geological timescales. So getting a handle on the rates and intensities of such events is important for efforts to connect them to extinctions in the fossil record.

"We find that a kind of gamma ray burst -- a short gamma ray burst -- is probably more significant than a longer ," said astrophysicist Brian Thomas of Washburn University. Improved and accumulated data collected by the , which catches gamma ray bursts in action in other galaxies, is providing a better case for the power and threat of the short bursts to .

The shorter bursts are really short: less than one second long. They are thought to be caused by the collision of two or maybe even colliding . No one is certain which. What is clear is that they are incredibly powerful events.

"The duration is not as important as the amount of radiation," said Thomas. If such a burst were to happen inside the Milky Way, it its effects would be much longer lasting to Earth's surface and oceans.

"What I focused on was the longer term effects," said Thomas. The first effect is to deplete the by knocking free oxygen and so they can recombine into ozone-destroying nitrous oxides. These long-lived molecules keep destroying ozone until they rain out. "So we see a big impact on the ozone layer."

Those effects are likely to have been devastating for many forms of life on the surface -- including terrestrial and marine plants which are the foundation of the food web.

Based on what is seen among other galaxies, these short bursts, it seems that they occur in any given galaxy at a rate of about once per 100 million years. If that is correct, then it's very likely that Earth has been exposed to such events scores of times over its history. The question is whether they left a calling card in the sky or Earth's geological record.

Astronomical evidence is not likely, said Thomas, because the galaxy spins and mixes pretty thoroughly every million years, so any remnants of blasts are probably long gone from view. There might, however, be evidence in the ground here on Earth, he said. Some researchers are looking at the isotope iron-60, for instance, which has been argued as a possible proxy for radiation events.

If isotopes like iron-60 can reveal the strata of the events, it then becomes a matter of looking for extinction events that correlate and seeing what died and what survived -- which could shed more light on the event itself.

"I work with some paleontologists and we try to look for correlations with extinctions, but they are skeptical," said Thomas. "So if you go and give a talk to paleontologists, they are not quite into it. But to astrophysicists, it seems pretty plausible."

Thomas will be presenting his work on Sunday morning 9 October 2011, at the annual meeting of The Geological Society of America in Minneapolis. This work was supported by the NASA Astrobiology: Exobiology and Evolutionary Biology Program.

Explore further: SDO captures images of two mid-level flares

Provided by Geological Society of America

4.4 /5 (8 votes)
add to favorites email to friend print save as pdf

Related Stories

The Cosmic Shredder and the Magnetar

Dec 15, 2005

No, it is not the title of the next Harry Potter book - but the latest discoveries from NASA's Swift mission which is studying gamma-ray bursts (GRB's) - the most powerful explosions occurring in the Universe. ...

Rare observation of cosmic explosion

Mar 10, 2011

Gamma ray bursts, which are the most powerful bursts of radiation in the universe, have now been observed in direct connection with an exploding giant star - a supernova. Researchers from the Niels Bohr Institute ...

Worldwide hunt to solve the mystery of gamma-ray bursts

Feb 16, 2008

UK space scientist Emeritus Professor Alan Wells is to speak at the American Association for the Advancement of Science (AAAS) in Boston in February on International Cooperation in Developing Swift and its Scientific Achievements.

Science with Integral -- 5 years on

Oct 17, 2007

With eyes that peer into the most energetic phenomena in the universe, ESA’s Integral has been setting records, discovering the unexpected and helping understanding the unknown over its first five years.

Recommended for you

SDO captures images of two mid-level flares

12 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

19 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

22 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

22 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

23 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.