Astronomy without a telescope - Green peas

Oct 25, 2011 By Steve Nerlich, Universe Today
A Green Pea galaxy - which may be an analogue of the universe's first galaxies. Credit: Galaxy Zoo/SDSS.

The ground-breaking discovery of a new class of galaxies, Green Peas, in 2009 by a group of Galaxy Zoo volunteers – have recently been followed up by further observations in the radio spectrum.

The were first identified from Sloane Digital Sky Survey data – and then in Hubble Space Telescope archive images. Now radio observations of Green Pea galaxies (from GMRT and VLA) have led to some new speculation on the role of magnetic fields in early galaxy formation.

Green Pea galaxies were so named from their appearance as small green blobs in Galaxy Zoo images. They are low mass galaxies, with low metallicity and high rates – but, surprisingly, are not all that far away. This is surprising given that their low metallicity means they are young – and being not very far away means they formed fairly recently (in universal timeframe terms).

Most nearby galaxies reflect the 13.7 billion year old age of the universe and have high metallicity resulting from generations of stars building elements heavier than hydrogen and helium through fusion reactions.

But Green Peas do seem to have formed from largely unsullied clouds of hydrogen and helium that have somehow remained unsullied for much of the universe’s lifetime. And so, Green Peas may represent a close analogue of what the universe’s first galaxies were like.

Their green color comes from strong OIII (ionized oxygen) emission lines (a common consequence of lots of new star formation) within a redshift (z) range around 0.2. A redshift of 0.2 means we see these galaxies as they were when the universe was about 2.4 billion years younger (according to Ned Wright’s cosmology calculator). Equivalent early universe galaxies are most luminous in ultraviolet at a redshift (z) between 2 and 5 – when the universe was between 10 and 12 billion years younger than today.

Anyhow, studying Green Peas in radio has yielded some interesting new features of these galaxies.

Spectroscopic data from Green Pea galaxy 587739506616631548 - demonstrating the prominent OIII emission lines which are characteristic of Green Pea galaxies. Credit: Galaxy Zoo.

With the notable exception of Seyfert galaxies, where the radio output is dominated by emission from supermassive black holes, the bulk radio emission from most galaxies is a result of new star formation, as well as synchrotron radiation arising from magnetic fields within the galaxy.

Based on a number of assumptions, Chakraborti et al are confident they have discovered that Green Peas have relatively powerful magnetic fields. This is surprising given their youth and smaller size – with strengths of around 30 microGauss, compared with the Milky Way’s approximately 5 microGauss.

They do not offer a model to explain the development of Green Pea magnetic fields, beyond suggesting that turbulence is a likely underlying factor. Nonetheless, they do suggest that the strong magnetic fields of Green Peas may explain their unusually high rate of star formation – and that this finding suggests that the same processes existed in some of the first to appear in our 13.7 billion year old universe.

Explore further: Image: Horsehead nebula viewed in infrared

More information: Chakraborti, et al., Radio Detection of Green Peas: Implications for Magnetic Fields in Young Galaxies

Cardamone, et al., Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies.

add to favorites email to friend print save as pdf

Related Stories

Cosmic magnetic fields

May 02, 2011

The mention of cosmic-scale magnetic fields is still likely to met with an uncomfortable silence in some astronomical circles – and after a bit of foot-shuffling and throat-clearing, the discussion will ...

Milky Way in mid-life crisis

May 25, 2011

(PhysOrg.com) -- The Milky Way is suffering from a mid-life crisis with most of its star formation behind it, new research from Swinburne University of Technology has shown.

New insights into the 'hidden' galaxies of the universe

Jun 14, 2011

A unique example of some of the lowest surface brightness galaxies in the universe have been found by an international team of astronomers lead by the Niels Bohr Institute. The galaxy has lower amounts of ...

Recommended for you

Image: Multicoloured view of supernova remnant

1 hour ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

1 hour ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

1 hour ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

2 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

2 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

Image: Hubble sweeps a messy star factory

2 hours ago

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Oct 25, 2011
neat.
Tuxford
2 / 5 (4) Oct 26, 2011
This too is no problem for LaViolette's steady-state cosmology. New gas slowly materializes over long time periods in intergalactic space, forming the basis for pristine gas clouds found therein which can condense into new young galaxies, even in recent times.
Tuxford
1 / 5 (2) Nov 20, 2011
LaViolette has commented that his model is not properly described as 'steady-state', but rather as 'continuous-creation.'

New sub-atomic particles can form spontaneously from the undetectable underlying matrix of even smaller 'objects', anywhere. However, the nucleation potential is greatly enhanced in regions of higher mass density, such as massive stars. In intergalactic space, this process would be extremely slow. Still, said space should contain some pristine gas, as new subatomic particles combine to form hydrogen over time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.