Researchers watch amyloid plaques form

October 3, 2011

Researchers at the University of Toronto Scarborough (UTSC) and Osaka University applied a new approach to take a close look at amyloid plaque formation, a process that plays important roles in Alzheimer's disease. The technique would greatly aid the development and screening for novel therapeutics that can manipulate the formation of the toxic amyloid aggregates.

Anthony Veloso, Prof. Kagan Kerman's PhD student in Chemistry, used a laser to trap amyloid-beta peptides and examined them under a fluorescence microscope as they aggregate, giving them an exceptionally detailed view of the process. The work appears on the cover of the current issue of Analyst, a journal of the Royal Society of Chemistry.

"This technique could accelerate the process. It gives us a new way to examine the early phase of , when the most of are formed," says Prof. Kerman, a faculty with the Department of Physical and Environmental Sciences at UTSC and the corresponding author on the paper.

Amyloid plaques are protein deposits that form around neurons and interfere with their function. The major constituent of these deposits are amyloid-beta, a peptide that clumps together to form harmful plaques in Alzheimer's patients, but is otherwise harmless in normal individuals.

To get a look at the early stages of the process, the Canadian researchers and their Japanese collaborators used a technique called optical trapping. A laser is focused into a very thin beam and aimed at solution containing amyloid-beta particles. The beam creates a small magnetic field, which attracts and holds the particles in place. Amyloid aggregates stained by a dye then glows under the , and the image can be captured by .

By using this technique, A. Veloso and Prof. Kerman hope to explore how the aggregates are formed, and to eventually discover the role of amyloid aggregates in Alzheimer's disease. Utilizing the versatility of this technique, Prof. Kerman's research team can extend their studies to understand aggregate formation in other neurodegenerative diseases.

The technique will also become a novel strategy to test therapeutic compounds that could halt the formation of plaques. Prof. Kerman and A. Veloso are working towards the automation of the technique, allowing for many compounds to be tested efficiently.

Explore further: Yeast model shows promise as Alzheimer's test

Related Stories

Yeast model shows promise as Alzheimer's test

November 18, 2006

A century ago this month, German psychiatrist Alois Alzheimer formally described characteristics of the neurodegenerative disease which ultimately came to bear his name. While international efforts to learn about Alzheimer's ...

New approach to Alzheimer's therapy

July 30, 2010

Researchers from the German Centre for Neurodegenerative Diseases and the Ludwig-Maximilians-Universitat in Munich have shown that the ADAM10 protein can inhibit the formation of beta-amyloid, which is responsible for Alzheimer's ...

Asthma drug could help control or treat Alzheimer's disease

March 25, 2011

A drug used to treat asthma has been shown to help reduce the formation of amyloid beta, a peptide in the brain that is implicated in the development of Alzheimer's disease, according to researchers at Temple University's ...

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011

Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.