How ammonia affects city's air

Oct 11, 2011 By David Ruth and Mike Williams

(PhysOrg.com) -- Motor vehicles and industry are primary producers of ammonia in Houston's atmosphere, and cars and trucks appear to boost their output during the winter, according to a new study by researchers at Rice University and the University of Houston (UH).

Ammonia's role in air quality draws minimal oversight from the (EPA), but researchers at both Houston institutions are learning what it means to life in and around the metropolis.

This video is not supported by your browser at this time.

The study led by Rice Professors Robert Griffin and Frank Tittel in collaboration with UH researcher James Flynn and Professor Barry Lefer revealed the seasons play a role in ammonia produced by vehicles. Their instruments also measured plumes of airborne ammonia from isolated incidents. The results appeared in a recent research paper in the journal .

The findings are not cause for immediate concern, said Griffin, an associate professor of civil and environmental engineering. "There may not be a health risk from ammonia itself, but the fact that ammonia is a precursor to particles is a big deal. They can get into your lungs and do some damage."

Ammonia quickly combines with other airborne elements: sulfuric acid to make salts or, in cooler conditions, nitric acid to make ammonium nitrate. The particles could impact air quality as well as atmospheric visibility, , climate patterns and , he said.

Ammonia is found throughout the atmosphere in levels ranging from parts per trillion to parts per billion (ppb), he said. People can detect ammonia at five to 50 parts per million (ppm). Concentrations above 100 ppm are uncomfortable to most, according to the EPA.

The sources are many: industry, motor vehicles, agriculture (as a major component of fertilizer) and livestock. Even humans produce ammonia. (Household ammonia is highly diluted with water -- but one should still avoid the pungent fumes.)

Wondering how much ammonia is in the atmosphere at any given time, the researchers gathered data 24 hours a day over two weeks in February and six weeks in late summer, 2010.

Readings were taken atop the University of Houston's tallest building, North Moody Tower. The residence hall is ideally situated to pick up changes in the wind not only from the nearby Houston Ship Channel and its associated industries to the east, but also power generation facilities to the southwest and Houston traffic in every direction.

Tittel, a pioneer in laser sensing and Rice's J.S. Abercrombie Professor of Electrical and Computer Engineering, and Rafal Lewicki, a co-author and graduate student in Tittel's laser science group, designed and built an apparatus to collect the data. Their external-cavity quantum cascade laser-based sensor is finely tuned to pick up signs of ammonia from air samples continuously cycled through the closed system. Real-time readings were taken with a resolution of less than five parts per billion and autonomously monitored at Rice via the Internet.

Sampling at a single site produced results that at first seemed contradictory, Griffin said.

For example, while overall levels were highest in the summer, ammonia emissions from vehicles were found to be highest in winter when harder-working car and truck engines reduced the performance of catalytic converters. (Carbon monoxide levels recorded by UH instruments on the tower correlated nicely, the study showed.)

Part of the answer was blowing in the wind. The researchers found the prevailing wind during winter morning rush hours came from the southeast -- past several major highways and Houston's William P. Hobby Airport -- and carried a high level of vehicle emissions.

During summer morning rush hours, the wind whistled in from the northeast, passing the ship channel and increasing readings from industrial activity and including occasional spikes, including a nearby traffic accident, that raised the average.

Winter levels of airborne ammonia ranged from 0.1 to 8.7 ppb with a mean of 2.4 ppb. A larger range -- 0.2 to 27.1 ppb with a mean of 3.1 ppb -- was observed during the summer.

In the Aug. 14 accident, two 18-wheeled tankers collided on Interstate 45 two miles north of the tower. One was carrying fertilizer and pesticide, and the fumes from the resultant chemical fire reached the sensor, which recorded a spike in airborne ammonia to about 21 ppb. "If the wind was blowing the other way, we wouldn't have captured it," said Owen Gong, a graduate student in Griffin's lab and first author of the paper. "There is a bit of luck associated with this kind of field work."

A similar spike occurred a few weeks later when winds from Hurricane Hermine in the Gulf of Mexico blew emissions from industries in and around Texas City -- 40 miles south of downtown Houston -- to the tower. The next week, ammonia levels reached 27 ppb, but no source of the emissions was identified.

Griffin appreciated having access to the UH site and Lefer and Flynn's help. "Without their data to give us wind direction and other chemical information, analysis of the ammonia time series would have been difficult," he said.

He admitted that, as an environmental scientist, he lives in interesting times -- and in an interesting place. The researcher, who came to Rice from the University of New Hampshire three years ago, said few talk about airborne particles in Houston because the city is currently "in attainment with respect to the air quality standard." The team's next study will track the source and fate of other components in airborne particulate matter.

Griffin did not foresee the EPA monitoring for the sake of establishing a standard. "But because it can be such a significant precursor to particulate matter, the EPA needs to keep an eye on it," he said.

Explore further: First radar vision for Copernicus

More information: Read the abstract at www.atmos-chem-phys.net/11/9721/2011/acp-11-9721-2011.html

Related Stories

Researchers study harmful particulates

Feb 26, 2007

Reducing barnyard emissions is one way to help reduce the harmful effects of tiny atmospheric air particles that can cause severe asthma in children, and lung cancer and heart attacks in some adults.

Seabird ammonia emissions contribute to atmospheric acidity

Sep 23, 2008

Ammonia emissions from seabirds have been shown to be a significant source of nitrogen in remote coastal ecosystems, contributing to nutrient enrichment (eutrophication) and acidification in ecosystems. While most ammonia ...

How dairy farms contribute to greenhouse gas emissions

Jul 19, 2011

U.S. Department of Agriculture (USDA) scientists have produced the first detailed data on how large-scale dairy facilities contribute to the emission of greenhouse gases. This research was conducted by Agricultural Research ...

Recommended for you

Clean air: Fewer sources for self-cleaning

12 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

12 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

18 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

19 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...