Unknown ocean bacteria create entirely new theories

Sep 16, 2011

The earth's most successful bacteria are found in the oceans and belong to the group SAR11. In a new study, researchers from Uppsala University provide an explanation for their success and at the same time call into question generally accepted theories about these bacteria. In their analysis they have also identified a rare and hitherto unknown relative of mitochondria, the power stations inside cells.

The findings were published in two articles in the journals and PLoS One in the last week.

"The huge amounts of DNA information now being produced from the oceans gives us a glimpse of a world that could never be studied before. It's incredibly fascinating to look for answers to the fundamental questions of life in these data, says Siv Andersson, professor of molecular evolution and lead author of the studies.

Bacteria belonging to the group SAR11 make up 30-40 percent of all bacteria cells in the oceans and therefore play a considerable role in global carbon cycles. Nowhere else are these bacteria so common. The open seas are poor in nutrients, and SAR11 bacteria have an extremely small cell volume in order to maximize the concentration of nutrients in the cells. Their genomes are small, consisting of fewer than 1.5 million .

According to previous research they are related to an equally specialized group of bacteria that includes the . These bacteria also have small genomes, but they are adapted to humans, animals, and insects. However, the advanced analyses of performed by the Uppsala researchers contradict these findings, indicating instead that SAR11 bacteria evolved from ocean- and earth-dwelling bacteria with genomes that are three to ten times as large. But unlike their closest relatives, SAR11 bacteria lack genes that are thought to be important in repairing damage to DNA. This might also explain why they have been so successful.

"The loss of genes means that the bacteria can more readily exchange genes with each other, and beneficial genes can then spread rapidly in the oceans as an adaptation to changes in nutrient content, temperature, and UV radiation, says Johan Viklund, a doctoral candidate at the Department of .

By digging into the data produced by ongoing international surveys of DNA from all the bacteria in the oceans, the Uppsala scientists have also found DNA sequences for proteins that participate in cell respiration, when sugar is broken down into carbon dioxide and water. By comparing these with the corresponding proteins for cell respiration in the so-called mitochondria of humans, animals, and insects, the researchers managed to identify a rare, previously unknown group of bacteria.

"These bacteria are very similar to mitochondria. Our findings thus indicate that the origin of mitochondria might be the oceans, but that the closest relatives are not related to the SAR11 group as was previously thought, says Thijs Ettema, a postdoctoral fellow with the team.

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

More information: PLoS One article: dx.plos.org/10.1371/journal.pone.0024457

Related Stories

Odd energy mechanism in bacteria analyzed

Nov 04, 2005

Scientists at Oregon State University have successfully cultured in a laboratory a microorganism with a gene for an alternate form of photochemistry – an advance that may ultimately help shed light on the ecology of the ...

Gene exchange common among sex-manipulating bacteria

Mar 25, 2009

Certain bacteria have learned to manipulate the proportion of females and males in insect populations. Now Uppsala University researchers have mapped the entire genome of a bacterium that infects a close relative of the fruit ...

Genome mapped for mite-borne typhus

May 10, 2007

Researches at Uppsala University, in collaboration with a Korean research team, have mapped and analyzed the genome for mite-borne typhus. A highly unexpected finding, now being published in the American journal Proceedings of ...

Cancer-causing gut bacteria exposed

Sep 22, 2008

Normal gut bacteria are thought to be involved in colon cancer but the exact mechanisms have remained unknown. Now, scientists from the USA have discovered that a molecule produced by a common gut bacterium activates signalling ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.